• Title/Summary/Keyword: High precision reduction

Search Result 294, Processing Time 0.025 seconds

An Experimental Study of Injection Molding for Multi-beam Sensing Lens Using The Change of Gate Geometry (금형 게이트 크기 변화에 따른 멀티빔 센서용 렌즈 사출성형성 향상에 관한 연구)

  • Cho, S.W.;Kim, J.S.;Yoon, K.H.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.333-338
    • /
    • 2011
  • Rapidly developing IT technologies in recent years have raised the demands for high-precision optical lenses used for sensors, digital cameras, cell phones and optical storage media. Many techniques are required to manufacturing high-precision optical lenses, including multi-beam sensing lenses investigated in the current study. In the case of injection molding for thick lenses, a shrinkage phenomenon often occurs during the process. This shrinkage is known to be the main reason for the lower optical quality of the lenses. In the present work, a CAE analysis was conducted simultaneously with experiments to understand and minimize this phenomenon. In particular, the sectional area of a gate was varied in order to understand the effects of packing and cooling processes on the final shrinkage pattern. As a result of this study, it was demonstrated that a dramatic reduction of the shrinkage could be obtained by increasing the width of the gate.

Thermal Characteristics of 600 W Brushless DC Motor under Axial Loading Condition (회전축 부하를 고려한 BLDC 모터의 열적 특성에 관한 실험 및 수치 해석적 연구)

  • Kwon, Hwabhin;Lee, Won-Sik;Kim, Gyu-Tak;Park, Heesung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.999-1005
    • /
    • 2016
  • A brushless direct current (BLDC) motor electronically performs rectification without brushes. It therefore does not have the typical mechanical friction contacts between the brushes and commutators. The BLDC motor has the advantages of high speed, low noise, and electronic noise reduction in addition to high durability and reliability. Therefore, it is mainly used in electric vehicles and electric equipment. However, iron loss and copper loss due to long-term use induce temperature increases in the motor, which reduces its performance and life. The temperatures of the stator and permanent magnet are predicted to be $62.3^{\circ}C$ and $32.2^{\circ}C$, respectively. This study shows the enhanced temperature distribution in a 600 W BLDC motor using unsteady and three-dimensional (3D) numerical investigations validated with experimental data.

Thermal Analysis for Laser Assisted Turning of Square Bar using Laser Heat Source Projection Method (사각형재의 레이저 예열 선삭에서 레이저 열원 투영법을 이용한 열해석)

  • Kim, Jae-Hyun;Choi, Jun-Young;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1353-1358
    • /
    • 2011
  • LAT(Laser Assisted Turning) is a method that applies a machining process after softening a workpiece in which a preheating process is locally applied to its machining section using laser heat source. LAT shows several advantages, such as high productivity, reduction of manufacturing cost, high quality. Analysis of temperature distribution after preheating for LAT is very difficult due to its very small heat input area and large energy and its movement. Also, the LAT for a square bar is more difficult because the shape of a laser heat source can be changed according to the rotation of the workpiece. In this study, thermal analysis for LAT of square bar was performed using laser heat source projection method. And, the analysis results were compared with the results of the prior study of numerical calculation method. It is thus shown that the proposed method is efficient for the thermal analysis of a shaped bar.

Shape Optimization for Lightweight of the Line Center for Processing Complex Shape Parts (복합형상 부품 가공용 라인센터의 경량화를 위한 형상 최적화에 관한 연구)

  • Park, Do-Hyun;Jeong, Ho-In;Kim, Sang-Won;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.86-92
    • /
    • 2021
  • As interest and demand for high value-added industries, including the global automobile and aerospace industries, have increased recently, demand for line centers with excellent performance that can respond to the production system for producing high value-added products is also rapidly increasing. A line center improves productivity based on the installed area using a multi-spindle compared to a conventional machining center. However, as the number of spindles increases, the weight increases and results in structural problems owing to the heat and vibration generated by each spindle. Therefore, it is necessary to improve machining precision through the structural improvement of the line center. This study presents research on the stabilization design of the line center through structural stability analysis through structural analysis to develop a compact multi-axis line center. An optimization model of the line center has been proposed to improve the processing precision and increase the rigidity by performing weight reduction based on the structural analysis results.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct

이송계에서 이송중량이 동적정도에 미치는 영향

  • 홍성오;김홍배;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.528-535
    • /
    • 2002
  • In order to achieve high precision machine tools, the research for performance enhancement of feed drive systems is required. Development of the high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of the tool change time as well as rapid travel time can enhance the productivity. However, the high speed feed drive system generates more heat in nature, which leads thermal expansion that has adverse effects on the accuracy of machined parts. Stick-slip friction has a great influence on the contouring accuracy of CNC machine tools. In this paper table levitation system has been developed for the stick-slip in a feed drive systems. And also, the driving position is set near the center of the main slideway. From the results, it is confirmed that yaw error and straightness can be improved.

  • PDF

Vibration Attenuation Study for an LCD Pannel Handling Rotot (액정디스플레이 (LCD) 판넬유리 운반로봇의 진동저감에 대한 연구)

  • Tak, Tae-Oh;Kim, Heon-Young;Chun, Hyung-Ho;Oh, Yong-Been
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.73-81
    • /
    • 2004
  • The development of efficient and precise handling of an liquid crystal display (LCD) panel has been addressed as the sizes of LCD panels become much larger than ever. The majority part of LCD panel handling is conducted by industrial robots for the cost reduction and the quality control. A challenging problem, vibration of the panel, can be found when the robots are utilized for handling LCD panels. The vibration causes the poor product precision and the low productivity. The characteristics of LCD panels, which are the high size-to thickness ratio, the high elasticity, and the high brittleness, are the major sources of the vibration This paper introduces the vibration attenuation techniques to overcome the difficulties encountered in the LCD production using the industrial robots.

  • PDF

Construction on Lot Tracking System for Failure Cost Reduction of a Small and Medium Precision Parts Processing Company (중소정밀부품가공기업의 실패비용 감소를 위한 로트추적시스템 구축)

  • Ha, Young-Soo;Park, Soo-Yong;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.80-88
    • /
    • 2019
  • Recently, automobile manufacturing companies, which are major customers of them, are requiring IATF 16949 (ISO/TS 16949) certification as a mandatory requirement to secure product quality. In particular, IATF 16949 : 2016, revised in October 2016, was reinforced product traceability requirements for production information management by lot in the production process. Therefore, small and medium-sized precision parts processing companies in the automobile industry are very difficult to survive due to quality and price competition for customers satisfaction. MES (Manufacturing Execution System) is required to solve this problem. However, small and medium sized precision parts processing enterprises are reluctant to introduce the MES which is not suitable for the manufacturing environment of them such as high cost and low utilization. Even if the system is introduced, it is difficult to operate and maintain the system because the lack of computer manpower. In this paper, we propose a method for building a lot tracking system for small and medium precision parts processing companies by reviewing relevant literature and analyzing cases. In addition, by managing the production history for each lot of the final product in the system, we will grasp the effect of reducing the quality failure cost obtained by minimizing the range of defect selection.

GC-Tree: A Hierarchical Index Structure for Image Databases (GC-트리 : 이미지 데이타베이스를 위한 계층 색인 구조)

  • 차광호
    • Journal of KIISE:Databases
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2004
  • With the proliferation of multimedia data, there is an increasing need to support the indexing and retrieval of high-dimensional image data. Although there have been many efforts, the performance of existing multidimensional indexing methods is not satisfactory in high dimensions. Thus the dimensionality reduction and the approximate solution methods were tried to deal with the so-called dimensionality curse. But these methods are inevitably accompanied by the loss of precision of query results. Therefore, recently, the vector approximation-based methods such as the VA- file and the LPC-file were developed to preserve the precision of query results. However, the performance of the vector approximation-based methods depend largely on the size of the approximation file and they lose the advantages of the multidimensional indexing methods that prune much search space. In this paper, we propose a new index structure called the GC-tree for efficient similarity search in image databases. The GC-tree is based on a special subspace partitioning strategy which is optimized for clustered high-dimensional images. It adaptively partitions the data space based on a density function and dynamically constructs an index structure. The resultant index structure adapts well to the strongly clustered distribution of high-dimensional images.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.