• Title/Summary/Keyword: High power module

Search Result 921, Processing Time 0.028 seconds

Development of Secondary Battery Module Cooling System Technology for Fast Charging (고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발)

  • Kang, Seok Jun;Kim, Miju;Sung, Donggil;Oh, Miyoung;Bae, Joonsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications (편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

A Study of Evaluation Certification on Electronic Power u-IT Convergence Equipment (전력 u-IT 융복합화 기기의 평가와 인증 연구)

  • Yi, Jeong-Hoon;Park, Dea-Woo;Kim, Eung-Sik;Kim, Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2433-2440
    • /
    • 2009
  • Whole system and network for supply of electric power and electricity safety are essential element. Electricity safety technology need rating for product and research about certification as product development that is done electric power u-IT cotton flannel mixed with development of u-IT, u-City base technology consists. Study on serve to develop electricity safety integration supervision system to apply product to u-City electric power appliance and cotton flannel mixed of u-IT appliance, Connection badness sensing instrument made device built-in electric power u-IT cotton flannel mixed in outlet that is used most in electric power appliance terminal. Using sensor on ZigBee, RFID performance estimation of communication module about function of product for remote safety check of electricity safety integration supervision system. A performance experiment and estimation in electric leakage, high voltage, Arc, fire detection diagnosis system and certification KS, electricity safety about product that get fitness finding.

Effect of Membrane Module and Feed Flow Configuration on Performance in Pressure Retarded Osmosis (압력지연삼투(PRO) 공정에서 막 모듈 배치와 유입원수의 유입 흐름방식이 성능에 미치는 영향)

  • Go, Gilhyun;Kim, Donghyun;Park, Taeshin;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.271-278
    • /
    • 2016
  • Recently, reverse osmosis (RO) is the most common process for seawater desalination. A common problem in both RO and thermal processes is the high energy requirements for seawater desalination. The one energy saving method when utilizing the osmotic power is utilizing pressure retarded osmosis (PRO) process. The PRO process can be used to operate hydro turbines for electrical power production or can be used directly to supplement the energy required for RO desalination system. This study was carried out to evaluate the performance of both single-stage PRO process and two-stage PRO process using RO concentrate for a draw solution and RO permeate for a feed solution. The major results, were found that increase of the draw and feed solution flowrate lead to increase of the production of power density and water permeate. Also, comparison between CDCF and CDDF configuration showed that the CDDF was better than CDCF for stable operation of PRO process. In addition, power density of two-stage PRO was lower than the one of single-stage. However, net power of two-stage PRO was higher than the one of single-stage PRO.

A Study on Evaluation of Power Management IC (전원모듈 PMIC 특성평가에 관한 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.260-264
    • /
    • 2016
  • The MAX77846, which is compatible with MAX77826, is a sub-power management IC (PMIC) for the latest Wearable Watch and 3G/4G smart phones. The MAX77846 contains N-MOSFET (N channel Metal-Oxide Semiconductor Field-Effect Transistor), a high-efficiency regulator, and comparator, etc to power up peripherals. The MAX77846 also provides power on/off control logic for complete flexibility and an $I^2C$ (Inter Integrated Circuit) serial interface to program individual regulator output voltages. In this paper, the simplified power macro-model based on MAX77846 is designed to verify the performance of the battery voltage in terms of current and time, and simulated by using of the LTspice. In addition, it is verified how much time can the charged battery capacity for Samsung Galaxy Gear 2 be used to operate a specified function after measuring the currents flowing to carry out the main functions in real time, which will be applicable to design parameters for the advanced power module

Live Lines Tracing Method in Power Distribution System with 3-phase-4 wires (삼상 다중 접지 배전계통에서 활선로 추적 방법)

  • Zheng, Yan-peng;Byun, Hee-Jung;Shon, Sugoog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.559-562
    • /
    • 2017
  • In city, tracing of power transmission lines is difficult due to compound installation of overhead and underground lines, transposition, bad view caused by trees or big buildings. It is hard problem for electrical technician on site to trace power transformers or power lines to serve customers in 3 phase -4 wires power distribution systems. It is necessary that the correct and fast tracing method is required for load balancing among distribution lines. Old technology use to trace off-lines with high power impulse injection. Our proposed method use to trace live lines with very small power high frequency signal injection. Typical power transformers in the distribution system prevent propagating the higher frequency carrier signal. The proposed method uses the limited propagation ability to identify the power transformer to serve customers. Two end communication terminals are required to be synchronized between them for determination on electrically same phases. Challenging issue is to achieve synchronization without GPS providing synchronizing time. A novel power transformer and wire identification system is designed and implemented. The system consists of a transmitter and a receiver with power-line communication module. Some experiments are conducted to verify the theoretical concepts in a big commercial building. Also some simulations are done to help and understand the concepts by using MATLAB Simulink simulator.

  • PDF

(Development of 100[W] Border Light using Color Mixing Technique by Simple-Inverse Matching Method) (Simple-Inverse Matching 혼색기법을 이용한 100[W] 무대조명 개발)

  • Youn, Jin-Sik;Song, Sang-Bin;Lim, Young-Cheol;Park, Joung-Wook;Hong, Jin-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.38-46
    • /
    • 2010
  • For the development of 100[W] stage lighting, quantitative and uniform color mixing that applied through color adopted Simple-Inverse matching so that color mixing can be possible along Black Body Locus. R,G,B(Red, Green, Blue) LED(Light Emitting Diode) arrangement through LED package character analysis, LED module, and the characteristic of device were considered for uniform color mixing. A distance changeable optical device was built to assure high uniformity and high diffusion of not only the middle of diffusion side but also the border side. Also, we developed the control power circuit that can expand up to 6 channels which are possible for quantitative color mixing, and the high uniformity and high quantified border light for color mixing control and the verification of color mixing characteristics by composing GUI(Graphical user interface) including color mixing simulator. By presenting the experimental results of light color control, we proved the usefulness of our developed border light and the proposed color mixing method.

Development of 6kW ZVS Boost Converter by 4-Parallel Operation (4-병렬 제어 기법을 적용한 6kW 영전압 스위칭 승압형 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • This paper presents development of 6kw ZVS(Zero Voltage Switching) boost converter by 4-parallel operation. To realize a high capacity converter with 6 kw, 4-parallel operation of 1.5kW unit module is proposed in this paper. To meet high ratio input to output voltage, isolated type booster converter is designed. To achieve ZVS operation of 4-switches of full bridge and protect a voltage overshoot caused by switch turn-off, simple active-clamp circuit is applied to the primary side. For parallel operation of 4-modules, master-slave control method is proposed to achieve input current sharing of 4-unit converter modules accurately. For performance tests, simulation is carried out. Also, load and experimental tests of the developed booster converter, 230Vdc/6kW, are carried out under various conditions. For field tests, the developed converter is applied for boosting a battery power to high DC_link voltage for a VSI inverter which starts a micro-turbine(MT) installed in vehicle and it's performance is verified through high speed motoring a MT up to tens of thousands of rpm.

A Prototype Development of Personal Low-frequency Stimulator with Characteristic Analysis (개인용 저주파 자극기의 특성분석 및 Prototype개발)

  • Lee, Gi-Song;Lee, Dong-Ha;Yu, Jae-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.349-352
    • /
    • 2003
  • A personal low-frequency stimulator is a portable device to relax muscle pains of a person. The stimulator generates combined low-frequency pulses to be applied to pads attached to painful muscles. This paper reports a development of such device with its characteristic analyses. The major components of our stimulator are MCU, high-voltage generating circuit part, high-voltage switching circuit part, input switch part and display unit. High-voltage generating circuit is designed by using a boost converter circuit and allows user control of the output voltage. High-voltage switching circuit, controlled by MCU, generates output voltage to be applied to pads. Input switch part is composed of power supply, intensity selection, mode selection and memory. Display unit adopts a text LCD module to display modes, Intensity, output frequency and user set-up time. Our designed safety circuit, to protect human body from possible electric shock, slowly increases the output voltage to the selected output intensity. It continuously checks the output pulse shape and disable the output when dangerous pulses are detected. This paper also shows some experimental results.

  • PDF

Design of Low Power Optical Channel for DisplayPort Interface (저전력 광채널용 디스플레이포트 인터페이스 설계)

  • Seo, Jun-Hyup;Park, In-Hang;Jang, Hae-Jong;Bae, Gi-Yeol;Kang, Jin-Ku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.58-63
    • /
    • 2013
  • This paper presents a transceiver design for DisplayPort interface using an optical channel. By converting the electronic channel to the optical channel, the DisplayPort's main channel can provide a high-speed data transmission for long distance. The design converting the electronic channel to the optical channel in the main channel and AUX channel of the DisplayPort is presented in this paper. Futhermore, the HPD signal transmission by using AUX channel is proposed. In order to minimize power consumption, this paper also proposed a method of controlling the TX block in the main link. The proposed system is designed by a FPGA and an optical module. The FPGA used 651 ALUT(adaptive look-up table)s, 511 resisters and 324 block memory bits. The maximum operating rate of the FPGA is 250MHz. With the proposed power control scheme, 740mW of power dissipation reduction can be achieved at the main link optical TX module.