• 제목/요약/키워드: High power buck converter

검색결과 239건 처리시간 0.021초

A Driving Scheme Using a Single Control Signal for a ZVT Voltage Driven Synchronous Buck Converter

  • Asghari, Amin;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.217-225
    • /
    • 2014
  • This paper deals with the optimization of the driving techniques for the ZVT synchronous buck converter proposed in [1]. Two new gate drive circuits are proposed to allow this converter to operate by only one control signal as a 12V voltage regulator module (VRM). Voltage-driven method is applied for the synchronous rectifier. In addition, the control signal drives the main and auxiliary switches by one driving circuit. Both of the circuits are supplied by the input voltage. As a result, no supply voltage is required. This approach decreases both the complexity and cost in converter hardware implementation and is suitable for practical applications. In addition, the proposed SR driving scheme can also be used for many high frequency resonant converters and some high frequency discontinuous current mode PWM circuits. The ZVT synchronous buck converter with new gate drive circuits is analyzed and the presented experimental results confirm the theoretical analysis.

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

A High-Efficiency Bidirectional AC/DC Topology for V2G Applications

  • Su, Mei;Li, Hua;Sun, Yao;Xiong, Wenjing
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.899-907
    • /
    • 2014
  • This paper proposes a single-phase bidirectional AC/DC converter topology applied in V2G systems, which consists of an inverter and a bidirectional non-inverting buck-boost converter. This topology can operate in four modes: buck charging, boost charging, buck discharging and boost discharging with high input current quality and unity input power factor. The inverter switches at line frequency, which is different from conventional voltage source inverters. A bidirectional buck-boost converter is utilized to adapt to a wider charging voltage range. The modulation and control strategy is introduced in detail, and the switching patterns are optimized to reduce the current ripple. In addition, the semiconductor losses are analyzed. Simulation and experimental results demonstrate the validity and effectiveness of the proposed topology.

자려식 승강압형 DC-DC 컨버터 (Self-Excited Buck-Boost DC-DC Converter)

  • 이성길;안태영
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권11호
    • /
    • pp.663-669
    • /
    • 1999
  • This paper presents new self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control method. Therefore, these converters are suitable for the portable appliances with battery source. It is especially suited for low power DC-DC conversion applications where non isolation output power is usually required. The steady state characteristics of proposed self exciting Buck-boost DC-DC converter are analysis and the result shows good agreement with experimental value. Furthermore the experimental results for 50W class self oscillating Buck-boost DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

A Study on Isolated DCM Converter for High Efficiency and High Power Factor

  • Kwak, Dong-Kurl
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.477-483
    • /
    • 2010
  • This paper is studied on a novel buck-boost isolated converter for high efficiency and high power factor. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit makes use of a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuit and reduces a number of control components. The input ac current waveform in the proposed converter becomes a quasi sinusoidal waveform in proportion to the magnitude of input ac voltage under constant switching frequency. As a result, it is obtained by the proposed converter that the switching power losses are low, the efficiency of the converter is high, and the input power factor is nearly unity. The validity of analytical results is confirmed by some simulation results on computer and experimental results.

고속 스위칭에 의한 만능 전려변화기 구성 (Universal power converter using High-Speed Switching)

  • 이스난도;프라요가 부디;최우석;박성준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.337-338
    • /
    • 2013
  • Combination the several type of single phase power conversion utilized simply topology are proposed in this paper. Totally four kind of converter are investigated, they are Boost AC/AC Converter, Buck AC/AC Converter, Boost AC/DC Converter, and Buck DC/AC Converter. Two types action mode are presented to determine the functional of circuit. First is AC chopper action mode, representation of the AC/AC converter. AC chopper action mode offered the sinusoidal current waveform, better power factor, faster dynamics, and smaller input/output filter. They present high robustness, offer safe commutation and have high efficiency. The second is full bridge action mode, determined the transformation AC to DC power and otherwise. Four switching devices and one magnetic contactor will establish the mode operation of circuit and manage the flow of power proceed in proper. The correction and advance of the kind of converter are verified by simulation.

  • PDF

Transformerless Three-Level DC-DC Buck Converter with a High Step-Down Conversion Ratio

  • Zhang, Yun;Sun, Xing-Tao;Wang, Yi-Feng;Shao, Hong-Jun
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.70-76
    • /
    • 2013
  • For high power high step-down dc-dc conversion applications, conventional three-level dc-dc converters are subject to extreme duty cycles or increased volume and cost due to the use of transformers. In this paper, a transformerless three-level dc-dc buck converter with a high step-down conversion ratio is proposed. The converter comprises two asymmetrical half bridges, which are of the neutral point clamped structures. Therefore, the output pulse voltage of the converter can be obtained in terms of the voltage difference between the two half bridges. In order to realize harmonious switching of the converter, a modulation strategy with capacitor voltages self balance is presented. According to the deduced output dc voltage function, transformerless operation without extreme duty cycles can be implemented. Experimental results from a 1kW prototype verify the validity of the proposed converter. It is suitable for ship electric power distribution systems.

A Wide Input Range, 95.4% Power Efficiency DC-DC Buck Converter with a Phase-Locked Loop in 0.18 ㎛ BCD

  • Kim, Hongjin;Park, Young-Jun;Park, Ju-Hyun;Ryu, Ho-Cheol;Pu, Young-Gun;Lee, Minjae;Hwang, Keumcheol;Yang, Younggoo;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2024-2034
    • /
    • 2016
  • This paper presents a DC-DC buck converter with a Phase-Locked Loop (PLL) that can compensates for power efficiency degradation over a wide input range. Its switching frequency is kept at 2 MHz and the delay difference between the High side driver and the Low side driver can be minimized with respect to Process, Voltage and Temperature (PVT) variations by adopting the PLL. The operation mode of the proposed DC-DC buck converter is automatically changed to Pulse Width Modulation (PWM) or PWM frequency modes according to the load condition (heavy load or light load) while supporting a maximum load current of up to 1.2 A. The PWM frequency mode is used to extend the CCM region under the light load condition for the PWM operation. As a result, high efficiency can be achieved under the light load condition by the PWM frequency mode and the delay compensation with the PLL. The proposed DC-DC buck converter is fabricated with a $0.18{\mu}m$ BCD process, and the die area is $3.96mm^2$. It is implemented to have over a 90 % efficiency at an output voltage of 5 V when the input range is between 8 V and 20 V. As a result, the variation in the power efficiency is less than 1 % and the maximum efficiency of the proposed DC-DC buck converter with the PLL is 95.4 %.

IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter (Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit)

  • 이주영
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.586-592
    • /
    • 2014
  • 본 논문에서는 DT-CMOS(Dynamic Threshold voltage Complementary MOSFET) 스위칭 소자를 사용한 DC-DC Buck 컨버터를 제안하였다. 높은 효율을 얻기 위하여 PWM 제어방식을 사용하였으며, 낮은 온 저항을 갖는 DT-CMOS 스위치 소자를 설계하여 도통 손실을 감소시켰다. 제안한 Buck 컨버터는 밴드갭 기준 전압 회로, 삼각파 발생기, 오차 증폭기, 비교기, 보상 회로, PWM 제어 블록으로 구성되어 있다. 삼각파 발생기는 전원전압(3.3V)부터 접지까지 출력 진폭의 범위를 갖는 1.2MHz의 주파수를 생성하며, 비교기는 2단 증폭기로 설계되었다. 그리고 오차 증폭기는 70dB의 이득과 $64^{\circ}$의 위상여유를 갖도록 설계하였다. 또한 제안한 Buck 컨버터는 current-mode PWM 제어회로와 낮은 온 저항을 갖는 스위치를 사용하여 100mA의 출력 전류에서 최대 95%의 효율을 구현하였으며, 1mA 이하의 대기모드에도 높은 효율을 구현하기 위하여 LDO 레귤레이터를 설계하였으며, 또한 2개의 IC 보호 회로를 내장하여 신뢰성을 확보하였다.

무손실 스너버 셀을 갖는 고주파 컨버터의 일반화 (A Generalization of High Frequency Converter with Lossless Snubber Cell)

  • 정규범
    • 전력전자학회논문지
    • /
    • 제9권5호
    • /
    • pp.478-484
    • /
    • 2004
  • 본 논문에서는 두 개의 무손실 스너버 셀을 제안하여 고주파에서 동작할 수 있는 컨버터를 일반화하였다. 컨버터 구현 시 스너버 셀의 선택은 컨버터 구조에 따라서 결정된다. 스너버 셀의 구성은 한 개의 포화 인덕터와 LC 공진회로, 두 개의 다이오드로 구성된다. 인덕터는 컨버터 주 다이오드의 역회복 손실을 저감시키는 역할을 하는데 포화 인덕터를 사용하면 셀 내의 공진 에너지를 감소시켜 컨버터가 고주파에서 동작될 수 있는 특성을 갖는다. 컨버터의 일반화는 무손실 스너버 셀을 벅(Buck), 부스트(Boost), 벅-부스트(Busk-Boost), 척(Cuk), 제타(ZETA) 및 세픽(SEPIC)에 추가하여 실현하였다. 제안된 컨버터의 고주파 동작 및 고효율 특성은 400 kHz, 125 W 부하에서 실험하여 기존의 PWM 컨버터에 비하여 고효율로 동작함을 확인하였다.