Dark matter is barely known because it cannot be explained using the Standard Model. In addition, dark matter has not been detected yet. It is currently being explored through various ways. In this paper, we studied dark matter in an electron-positron collider using MadGraph5. The signal channel is e+e- → 𝜇+𝜇-A' where A' decays to dimuon. We studied the cross-section by increasing the center-of-mass energy. Central processing unit (CPU) time of simulation was compared with that using a local Linux machine and a KISTI-5 supercomputer (Knight Landing and Skylake). Furthermore, one or more cores were used for comparing CPU time among machines. Results of this study will enable the exploration of dark matter in electron-positron experiments. This study also serves as a reference for optimizing high-energy physics simulation toolkits.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.1
/
pp.138-144
/
2010
Tachyon primary system which introduces recently is a high performance supercomputer that composed with AMD Barcelona nodes. In this paper, we will verify the performance and parallel scalability of TachyonIn by using multi-zone NAS Parallel Benchmark(NPB) which is one of a program with hybrid parallel method. To test performance of hybrid parallel execution, B and C classes of BT-MZ in NPB version 3.3 were used. And the parallel scalability test has finished with Tachyon's 1024 processes. It is the first time in Korea to get a result of hybrid parallel computing calculation using more than 1024 processes. Hybrid parallel method in high performance computing system with multi-core technology like Tachyon describes that it can be very efficient and useful parallel performance benchmarks.
Recently, many attentions have been paid to conducting convergence research across diverse disciplines. Along with this convergence era, an IT-based multi-disciplinary convergence project, called EDISON (EDucation-research Integrated Simulation On the Net), has been launched to support the studies of researchers engaged in several computational science and engineering (CSE) fields and to boost learning motivations of CSE students. Since 2011, we have been successfully carrying out the EDISON project. EDISON as a cyber-learning platform enables CSE researchers to share their own high-performance computing (HPC) simulation softwares developed to solve their research problems accompanying large-scale computation and I/O and users to run the softwares with little constraints on the web. Also, the EDISON platform has been utilized as lecture material by many universities in Korea. This article introduces the construction and service statistics of this EDISON platform. Specifically, we explicate several distinctions between EDISON and existing other HPC service platforms and discuss a three-layered technical architecture of the EDISON platform. We then present the up-to-date service statistics of EDISON over the past four years. Finally, we conclude this article and describe future plans.
최근 하드웨어의 성능 및 소프트웨어 기술이 비약적으로 발전하면서 컴퓨팅을 위한 인프라 환경이 클라우드 기술 기반으로 활발하게 연구, 개발되고 있다. 이에 본 논문에서는 슈퍼컴퓨터로 대표되는 고성능 컴퓨팅을 분야에서 클라우드 기반 인프라 및 서비스를 제공하기 위한 KI Cloud 플랫폼을 소개한다. KI Cloud 플랫폼은 VM 기반으로 IaaS 서비스를 제공하고, 컨테이너 기술을 기반으로 HPC 사용자를 위한 PaaS 서비스를 제공하는 통합 플랫폼으로 설계 및 개발되었다.
International journal of advanced smart convergence
/
v.12
no.4
/
pp.164-170
/
2023
With the recent advances in AI (artificial intelligence) and HPC (high-performance computing) technologies, deep learning is proliferated in various domains of the 4th industrial revolution. As the workload volume of deep learning increasingly grows, analyzing the memory reference characteristics becomes important. In this article, we analyze the memory reference traces of deep learning workloads in comparison with traditional workloads specially focusing on read and write operations. Based on our analysis, we observe some unique characteristics of deep learning memory references that are quite different from traditional workloads. First, when comparing instruction and data references, instruction reference accounts for a little portion in deep learning workloads. Second, when comparing read and write, write reference accounts for a majority of memory references, which is also different from traditional workloads. Third, although write references are dominant, it exhibits low reference skewness compared to traditional workloads. Specifically, the skew factor of write references is small compared to traditional workloads. We expect that the analysis performed in this article will be helpful in efficiently designing memory management systems for deep learning workloads.
KIPS Transactions on Computer and Communication Systems
/
v.8
no.10
/
pp.231-238
/
2019
Analyzing next-generation genome sequencing data in a conventional way using single server may take several tens of hours depending on the data size. However, in order to cope with emergency situations where the results need to be known within a few hours, it is required to improve the performance of a single genome analysis. In this paper, we propose a parallelized method for pre-processing genome sequence data which can reduce the analysis time by utilizing the big data technology and the highperformance computing cluster which is connected to the high-speed network and shares the parallel file system. For the reliability of analytical data, we have chosen a strategy to parallelize the existing analytical tools and algorithms to the new environment. Parallelized processing, data distribution, and parallel merging techniques have been developed and performance improvements have been confirmed through experiments.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.2
/
pp.610-619
/
2016
Digital manufacturing (DM) technology helps engineers design products promptly and reliably at low production cost by simulating a manufacturing process and the material behavior of a product in use, based on three-dimensional digital modeling. The computing infrastructure for digital manufacturing, however, is usually expensive and, at present, the number of professional design engineers who can take advantage of this technology to a product design accurately is insufficient, particularly in small and medium manufacturing companies. Considering this, the Korea Institute of Science and Technology Information (KISTI) and H University is operating a DM track in the form of Industry-University-Research Institute collaboration to train high-performance-computing-based DM professionals. In this paper, a series of courses to train students to work directly into DM practice in industry after graduation is reported. The operating cases of the DM track for two years since 2013 are presented by focusing on the progress in establishment, lecture and practice contents, evaluation of students, and course quality improvement. Overall, the track management, curriculum management, learning achievement of students have been successful. By expediting more active participation of the students in the track and providing more internship and job offers in the participating companies in addition to collaborative capstone design projects, the track can be expanded by fostering a nationwide training network.
Proceedings of the Korean Society of Computer Information Conference
/
2014.01a
/
pp.9-13
/
2014
The performance of large scale software applications has been automatically increasing for last few decades under the influence of Moore's law - the number of transistors on a microprocessor roughly doubled every eighteen months. However, on-chip transistors limitations and heating issues led to the emergence of multicore processors. The energy efficient ARM based System-on-Chip (SoC) processors are being considered for future high performance computing systems. In this paper, we present a case study of two widely used parallel programming models i.e. MPI and MapReduce on distributed memory cluster of ARM SoC development boards. The case study application, Black-Scholes option pricing equation, was parallelized and evaluated in terms of power consumption and throughput. The results show that the Hadoop implementation has low instantaneous power consumption that of MPI, but MPI outperforms Hadoop implementation by a factor of 1.46 in terms of total power consumption to execution time ratio.
Journal of the Korean Society of Industry Convergence
/
v.25
no.2_2
/
pp.219-232
/
2022
The aim of this study is to provide the dynamic convergence index that reflected the inherent characteristics of the convergence phenomenon and utilized the nationally-funded R&D projects data, thereby suggesting useful information about the direction of the national convergence R&D strategy. The dynamic convergence index that we suggested was made of two indicators: persistency and diversity. From a time-series perspective, the persistency index, which measures the degree of continuous convergence of multidisciplinary nationally-funded R&D projects, and the diversity index, which measures the degree of binding with heterogeneous research areas. We conducted the empirical experiment with 151,248 convergence R&D projects during the 2015~2021 time period. The results showed that convergence R&D projects in both public health and life sciences appeared the highest degree of persistency. It was presumed that the degree of persistency has increased again due to the COVID-19 pandemic. Meanwhile, the degree of diversity has risen with combining with disciplinary such as materials, chemical engineering, and brain science areas to solve social problems including mental health, depression, and aging. This study not only provides implications for improving the concept and definition of dynamic convergence in terms of persistency and diversity for national convergence R&D strategy but also presented dynamic convergence index and analysis methods that can be practically applied for directing public R&D programs.
Computational science simulations have been used to enable discovery in a broad spectrum of application areas, these simulations show irregular demanding characteristics of computing resources from time to time. The adoption of virtualized high performance cloud, rather than CPU-centric computing platform (such as supercomputers), is gaining interest of interests mainly due to its ease-of-use, multi-tenancy and flexibility. Basically, provisioning a virtual cluster, which consists of a lot of virtual machines, in a real-time has a critical impact on the successful deployment of the virtualized HPC clouds for computational science simulations. However, the cost of concurrently creating many virtual machines in constructing a virtual cluster can be as much as two orders of magnitude worse than expected. One of the main factors in this bottleneck is the time spent to create the virtual images for the virtual machines. In this paper, we propose a novel technique to minimize the creation time of virtual machine images and improve I/O performance of the provisioned virtual clusters. We also confirm that our proposed technique outperforms the conventional ones using various sets of experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.