• Title/Summary/Keyword: High peak power

Search Result 913, Processing Time 0.024 seconds

A Novel Control Method of Resistance Spot Welding Inverter using Dynamic Resistance Characteristics for Weld Quality Improvement (용접품질 향상을 위한 저항 스폿 용접용 인버터의 동저항 특성을 이용한 새로운 제어기법)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.491-497
    • /
    • 2015
  • This study proposes a new control method for a resistance spot welding inverter to improve weld quality. The proposed method is based on the dynamic resistance characteristics of steel sheets to be welded. A point in the second peak value of the dynamic resistance occurs during one shot of the welding current flow. A constant voltage control is applied from zero to the peak point, and a constant current control is adopted from the peak point to the end of the shot. The mixed mode control of the constant voltage and current guarantees high weld quality. Experiments are conducted with a 5 kA power supply and 0.5 mm steel sheets to compare quality. Experimental results show that weld quality is improved more than 10 times that of the conventional control method.

Cyclic Shift Based Tone Reservation PAPR Reduction Scheme with Embedding Side Information for FBMC-OQAM Systems

  • Shi, Yongpeng;Xia, Yujie;Gao, Ya;Cui, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2879-2899
    • /
    • 2021
  • The tone reservation (TR) scheme is an attractive method to reduce peak-to-average power ratio (PAPR) in the filter bank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) systems. However, the high PAPR of FBMC signal will severely degrades system performance. To address this issue, a cyclic shift based TR (CS-TR) scheme with embedding side information (SI) is proposed to reduce the PAPR of FBMC signals. At the transmitter, four candidate signals are first generated based on cyclic shift of the output of inverse discrete Fourier transform (IDFT), and the SI of the selected signal with minimum peak power among the four candidate signals is embedded in sparse symbols with quadrature phase-shift keying constellation. Then, the TR weighted by optimal scaling factor is employed to further reduce PAPR of the selected signal. At the receiver, a reliable SI detector is presented by determining the phase rotation of SI embedding symbols, and the transmitted data blocks can be correctly demodulated according to the detected SI. Simulation results show that the proposed scheme significantly outperforms the existing TR schemes in both PAPR reduction and bit error rate (BER) performances. In addition, the proposed scheme with detected SI can achieve the same BER performance compared to the one with perfect SI.

Performance Analysis of Combining Method for PAR Reduction in OFDM (OFDM에서 PAR을 제거하기 위한 혼합방법의 성능 해석)

  • 김병주;변건식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.163-166
    • /
    • 2002
  • OFDM should be used for the fourth generation communication for high speed communication. Because of high spectral efficiency and high tolerance to fading channel, OFDM is applied to many high speed wire and wirless communication such as DAB(Digital Audio Broudcast), DVB(Digital Video Broadcast), IMT 2000 etc. Inter-modulation, however, is derived from PAR(Peak to Average Power Ratio) of OFDM signals. The paper describes PTS(Partial Transmit Sequence) and SLM(Select Mapping) of an existing methods which can reduce PAR. And then the document introduces the new method that is called "Combine PAR method". The method proposed in this paper is to combine PTS and SLM. As a result of the simulation, Combine PAR method is better than the existing methods.g methods.

  • PDF

New low-complexity segmentation scheme for the partial transmit sequence technique for reducing the high PAPR value in OFDM systems

  • Jawhar, Yasir Amer;Ramli, Khairun Nidzam;Taher, Montadar Abas;Shah, Nor Shahida Mohd;Audah, Lukman;Ahmed, Mustafa Sami;Abbas, Thamer
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.699-713
    • /
    • 2018
  • Orthogonal frequency division multiplexing (OFDM) has been the overwhelmingly prevalent choice for high-data-rate systems due to its superior advantages compared with other modulation techniques. In contrast, a high peak-to-average-power ratio (PAPR) is considered the fundamental obstacle in OFDM systems since it drives the system to suffer from in-band distortion and out-of-band radiation. The partial transmit sequence (PTS) technique is viewed as one of several strategies that have been suggested to diminish the high PAPR trend. The PTS relies upon dividing an input data sequence into a number of subblocks. Hence, three common types of the subblock segmentation methods have been adopted - interleaving (IL-PTS), adjacent (Ad-PTS), and pseudorandom (PR-PTS). In this study, a new type of subblock division scheme is proposed to improve the PAPR reduction capacity with a low computational complexity. The results indicate that the proposed scheme can enhance the PAPR reduction performance better than the IL-PTS and Ad-PTS schemes. Additionally, the computational complexity of the proposed scheme is lower than that of the PR-PTS and Ad-PTS schemes.

Power Efficient Modulation Scheme $CDM^2-MAP$ for Low Complexity and High Performance

  • Khuong Ho Van;Kong Hyung-Yun;Nam Doo-Hee
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Quadrature amplitude modulation-spread spectrum (QAM-SS) and code division multiplexing (CDM) are multi-level modulation schemes with high performance but they cause a large peak-average power ratio (PAPR). Therefore, this paper proposes a novel modulation scheme for high-rate transmission which follows a sequence of CDM-mapping-CDM not only to correct the above-mentioned problem but also offer a high flexibility in obtaining arbitrary multilevel modulation with very low implementation complexity and high performance.

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

High Temperature Deformation Behavior of Microalloyed Hot Forging Steels (열간 단조용 비조질강의 고온 변형 거동에 관한 연구)

  • Wi, Gyeom-Bok;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.343-352
    • /
    • 1992
  • The high temperature deformation behavior of microalloyed hot forging steels has been examined as a function of the temperature, the strain rate, and the alloying element by using high temperature compression test. The high temperature deformation mechanism, which was obtained by analyzing the flow stress-strain curve and microstructure, could be considered to dynamic recrystallization. The peak stress of Nb-V-Mo steel was more increased and the dynamic recrystallization of Nb-V-Mo steel was faster than those of Nb-V steel. The peak stress of 1.2Mn-0.09Nb steel was more increased and the dynamic recrystallization of 1.2Mn-0.09Nb was delayed a little bit than those of 1.0Mn-0.05Nb. The peak stress of C-Nb-V steel was more increased and the dynamic recrystallization of C-Nb-V steel was delayed than those of C-steel. The constitutive equation of high temperature deformation had a power law type. The grain size of dynamic recrystallization was refined as the Zener-Hollomon parameter was increased. The relation of the dynamic recrystallization grain size and Zener-Hollomon parameter could be quantified to power law.

  • PDF

A New Scan Partition Scheme for Low-Power Embedded Systems

  • Kim, Hong-Sik;Kim, Cheong-Ghil;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.412-420
    • /
    • 2008
  • A new scan partition architecture to reduce both the average and peak power dissipation during scan testing is proposed for low-power embedded systems. In scan-based testing, due to the extremely high switching activity during the scan shift operation, the power consumption increases considerably. In addition, the reduced correlation between consecutive test patterns may increase the power consumed during the capture cycle. In the proposed architecture, only a subset of scan cells is loaded with test stimulus and captured with test responses by freezing the remaining scan cells according to the spectrum of unspecified bits in the test cubes. To optimize the proposed process, a novel graph-based heuristic to partition the scan chain into several segments and a technique to increase the number of don't cares in the given test set have been developed. Experimental results on large ISCAS89 benchmark circuits show that the proposed technique, compared to the traditional full scan scheme, can reduce both the average switching activities and the average peak switching activities by 92.37% and 41.21%, respectively.

  • PDF

Practical Design and Implementation of a Power Factor Correction Valley-Fill Flyback Converter with Reduced DC Link Capacitor Volume (저감된 DC Link Capacitor 부피를 가지는 역률 개선 Valley-Fill Flyback 컨버터의 설계 및 구현)

  • Kim, Se-Min;Kang, Kyung-Soo;Kong, Sung-Jae;Yoo, Hye-Mi;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.277-284
    • /
    • 2017
  • For passive power factor correction, the valley fill circuit approach is attractive for low power applications because of low cost, high efficiency, and simple circuit design. However, to vouch for the product quality, two dc-link capacitors in the valley fill circuit should be selected to withstand the peak rectified ac input voltage. The common mode (CM) and differential mode (DM) choke should be used to suppress the electromagnetic interference (EMI) noise, thereby resulting in large size volume product. This paper presents the practical design and implementation of a valley fill flyback converter with reduced dc link capacitors and EMI magnetic volumes. By using the proposed over voltage protection circuit, dc-link capacitors in the valley fill circuit can be selected to withstand half the peak rectified ac input voltage, and the proposed CM/DM choke can be successfully adopted. The proposed circuit effectiveness is shown by simulation and experimentally verified by a 78W prototype.

Performance Comparison of Common-Mode Voltage Reduction Methods in terms of Modulation Index (변조지수에 따른 공통모드 전압 저감 기법 성능 비교)

  • Heo, Geon;Park, Yongsoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.106-108
    • /
    • 2020
  • This paper introduces a new pulse-width modulation (PWM) method to reduce common-mode voltages (CMVs) and compare its performance with other reduced CMV-PWM (RCMV-PWM) methods. To avoid the use of zero-vectors which cause high CMV peaks, the introduced method splits every reference vector into two vectors such that the peak-to-peak magnitude of CMV is reduced by one-third of conventional space-vector PWM (SVPWM). The performance of RCMV-PWMs altered by the modulation index are analyzed with simulation results.

  • PDF