• Title/Summary/Keyword: High order panel method

Search Result 118, Processing Time 0.03 seconds

A Method of Analysis to Predict Sound Transmission Loss of an Extruded Aluminum Panel for Use on Railway Vehicles (철도차량용 알루미늄 압출재의 음향 투과손실 예측에 관한 연구)

  • Kim, Kwanju;Lee, Jun-Heon;Kim, Dae-Yong;Kim, Seock-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • The frame elements of modern high speed trains are typically fabricated with extruded aluminum panels. However, the sound transmission loss (STL) of extruded aluminum panels is less satisfactory than flat panels with the same surface density. This study proposes a method for prediction of the sound transmission loss of extruded aluminum panels using finite element analysis. The panel is modeled by finite element analysis, and the STL is calculated using a measure of Sommerfeld radiation at the specimen surface, boundary conditions, and the internal loss factor of the material. In order to verify the validity of the predicted value, intensity transmission loss was measured on the aluminum specimen according to ASTM E2249-02. The proposed method of analysis will be utilized to predict the sound insulation performance of extruded aluminum panels for railway vehicles in the design stage, and to establish measures for their improvement.

Springback Control in the Forming Processes for High-Strength Steel Sheets (고강도 강판 성형 공정의 스프링백 제어)

  • 양우열;이승열;금영탁;황진영;윤치상;신철수;조원석
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.718-723
    • /
    • 2003
  • Tn order to develop springback control technology for high-strength steel sheets, several studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next, the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to evaluate the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type. high-strength sheet panels.

An extension of a high order approach for free vibration analysis of the nano-scale sandwich beam with steel skins for two types of soft and stiff cores

  • Marandi, S. Masoud;Dehkordi, Mohsen Botshekanan;Nourbakhsh, S. Hassan
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.261-276
    • /
    • 2019
  • The study investigates the free vibration of a nano-scale sandwich beam by an extended high order approach, which has not been reported in the existing literature. First-order shear deformation theory for steel skins and so-called high-order sandwich panel theory for the core are applied. Next, the modified couple stress theory is used for both skins and cores. The Hamilton principle is utilized for deriving equations and corresponding boundary conditions. First, in the study the three-mode shapes natural frequencies for various material parameters are investigated. Also, obtained results are evaluated for two types of stiff and soft cores and isotropic, homogenous steel skins. In the research since the governing equations and also the boundary conditions are nonhomogeneous, therefore some closed-form solutions are not applicable. So, to obtain natural frequencies, the boundary conditions are converted to initial conditions called the shooting method as the numerical one. This method is one of the most robust approaches to solve complex equations and boundary conditions. Moreover, three types of simply supported on both sides of the beam (S-S), simply on one side and clamp supported on the other one (S-C) and clamped supported on both sides (C-C) are scrutinized. The parametric study is followed to evaluate the effect of nano-size scale, geometrical configurations for skins, core and material property change for cores as well. Results show that natural frequencies increase by an increase in skins thickness and core Young modulus and a decrease in beam length, core thickness as well. Furthermore, differences between obtained frequencies for soft and stiff cores increase in higher mode shapes; while, the more differences are evaluated for the stiff one.

An Implementation of High Speed Rendering to Process Touch Screen Multiple Inputs based on FPGA (FPGA 기반의 터치스크린 다중입력처리를 위한 고속 렌더링 구현)

  • Yoon, Junhan;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1803-1810
    • /
    • 2017
  • A large amount of processing time is required if the process of detecting the touch position on the touch screen and displaying it on the display panel is performed only by software. In this paper, we propose a method to output information touched on the screen using H/W method in order to improve the response speed delay. In the FPGA module designed for the HDMI signal output to the display module, the touch information is input to the serial data signal including touch coordinate information, point size, and color information. Then the module render the image using HDMI signal input to the module and the touch information. This method has a pipeline structure so it has effect of reducing the delay time that occurs in outputting the touch information compared with the conventional software processing method.

A Synthesis Ratio of Light Emitting Diodes and Quantization Noise for Increasing Brightness of Head-up Displays (헤드업 디스플레이 휘도 증가를 위한 LED 합성비율과 영상잡음에 대한 연구)

  • Chi, Yongseok
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.816-823
    • /
    • 2016
  • This paper studies a light emitting diode(LED) overlapping method of a head-up display that consists of a digital micro device(DMD) panel and a red, green, blue LED in order to increase the brightness of display system and optical output power. This optimization overlapping method removes a quantization noise which occur due to LED overlapping too excessive and stabilizes the junction temperature of LED. In order to reduce junction temperature of LED, the a correlation between a green duty and LED overlapping ratio is studied. Throughout this study, the brightness of head-up display exhibited high increasement ratio of luminance around 33.3 percent at 39 percent overlapping method.

A High-efficiency Single-phase Photovoltaic Inverter for High-voltage Photovoltaic Panels (고전압 태양광 패널용 고효율 단상 태양광 인버터)

  • Hyung-Min, Ryu
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.584-589
    • /
    • 2022
  • For DC-AC power conversion from a high-voltage photovoltaic panel to a single-phase grid, the two-stage transformerless inverter with a buck-boost converter followed by a full-bridge inverter is widely used. To avoid an excessive leakage current due to the large parasitic capacitance of the photovoltaic panel, the full-bridge inverter can only adopt the bipolar PWM which results in much higher power loss compared to the unipolar PWM. In order to overcome such a poor efficiency, this paper proposes a new topology in which an IGBT and a diode for circuit isolation are added to the buck-boost converter. The proposed circuit isolation method allows the unipolar PWM in the full-bridge inverter without any increase in the leakage current so that the overall efficiency can be improved. The validity of the proposed solution is verified by computer simulation and power loss calculation.

Developing evaluation criteria for quality management systems adoption by using delphi technique (델파이 기법을 활용한 품질경영시스템 조직 진단 항목개발에 관한 연구)

  • Choi, Jaewoong;Jun, Byoungho;Choi, Jaeyoung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.2
    • /
    • pp.87-102
    • /
    • 2016
  • The customer requirements are constantly changing in the hyper-competition and competition is becoming increasingly intensified. In order to ensure the competitive advantage in the industry should focus on the management activities to enhance customer satisfaction. High quality means pleasing customers, not just protecting them from annoyances. It is due to continuous and requires the establishment of a quality management system that meets the characteristics and systematization need to manage a stable quality and productivity, which should be done in a company-wide quality management activities. The purpose of this study is to identify a suitable organizational diagnostic model for considering to adopt ISO 9001 quality management systems. We used the three-round delphi techniques on a panel of 30 experts. A total of 26 assessment indicators were developed through this panel. First, it is important to evaluate the strategy about quality. Second, it is important to evaluate the systems about periodically communicating quality agenda. Third, it is important to evaluate the responsibility of overall business process. In conclusion, this study empirically shows how firms can develop an organizational diagnostic model to increase their quality management systems.

Shear Strength of Vertical Joints in Precast Concrete Panel with Shear Key (전단키를 갖는 프리캐스트 콘크리트 패널 수직접합부의 전단강도)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.151-158
    • /
    • 2019
  • A concrete core is used widely as lateral stability systems in high-rise modular buildings. As an alternative to traditional cast in-situ core, the precast concrete(PC) method can accelerate the construction of reinforced concrete cores. A core composed of precast elements differs from a in-situ core in having connections between the precast elements. The typical vertical connection between PC panels is consisted of shear keys, loop bars, lacer bars and grout. In this study, the effect of vertical connection components on shear strength is investigated experimentally. The test results show that the contribution to the shear strength is greater in order of grout strength, shear keys, lacer bars and loop bars. In addition, the numerical models to estimate the shear strength according to two crack patterns in the vertical joint of the PC panels are derived. The feasibility of the numerical models is evaluated by comparing the estimated shear strength and the test results.

Comparison of Numerical Analyses and Model Test for Evaluation on Hydroelastic and Higher-order Springing Responses of Fixed Cylindrical Structure

  • Kim, Hyun-Sung;Won, Younguk;Oh, Young Jae;Lee, Kangsu;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.191-202
    • /
    • 2021
  • Studies on very large offshore structures are increasing owing to the development of deep sea, large-scale energy generation using ocean resources, and so on. The enlargement of offshore structures makes the hydroelastic effect and low natural frequency related responses important. Numerical analyses and model tests for hydroelastic and higher-order springing responses of fixed cylindrical structures are conducted in this study. The panel methods with and without the hydroelastic effect with shell elements, and the Morison analysis method with beam elements are applied. To observe the hydroelastic effect for structural strength, two structures are considered: bottom-fixed cylindrical structures with high and low bending stiffnesses, respectively. The surge motions at the top of the structure and bending stresses on the structure are observed under regular and irregular wave conditions. The regular wave conditions are generated considering the ratios of the cylindrical outer diameter to the wave lengths, and keeping the wave steepness constant. The model tests are performed in the three-dimensional ocean engineering basin in the KRISO (Korea Research Institute of Ships and Ocean Engineering). From the numerical and experimental results, in which the hydroelastic responses are only observed in the case of the structure with a low bending stiffness, it is confirmed that the hydroelastic responses are highly dependent on the structural stiffness. Additionally, the higher-order phenomenon on the specified wave condition is analyzed by observing the higher-order springing responses when the incident wave frequency or its multiples with the high wave height coincides with the natural frequency of the structure.

Calculation of Wave Resistance of a Hybrid Hydrofoil (복합지지형 고속선의 조파저항 계산)

  • Yoo, J.H.;Kim, Y.G.;Lew, J.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A potential-based panel method has been developed for numerical computation of wave resistance on a hybrid hydrofoil. Hybrid hydrofoil is composed of a main body, two struts and two hydrofoils. The main body, which is assumed to be an axisymmetric body for the present analysis, is normally used to support displacement of a body with its buoyancy. Normal dipoles and the sources are distributed on the body(main body, struts, hydrofoils) and the sources are distributed on the free surface. Linearized free surface and the radiation conditions are satisfied using the fourth order finite difference operator and the semi-linear pressure Kutta condition is used for the numerical computation of the hydrofoils. Poisson type free surface condition has been used for the numerical computation and hyperboloidal panel method has been used for better numerical accuracy. To verify this numeric method, model tests are performed in circulation water channel. From the comparison of experimental results with numeric ones, the present method can be used as a useful tool for the design of high speed vessels.

  • PDF