• Title/Summary/Keyword: High order modulation

Search Result 326, Processing Time 0.024 seconds

A study on control strategy of power factor correction for AC-DC power conversion system (AC-DC 전력변환기의 역률개선 제어기법에 관한 연구)

  • Kwak Dong-Kurl;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.263-266
    • /
    • 2003
  • The high power factor converters are classified step-up, step-up-down and step-down converter, The power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. And the power system brings on a high efficiency and high power factor. When a switch of the step down converter is operated with a commercial frequency(60Hz), a reactor using the converter is gone with a great number of harmonics waveforms of low grade. As results of this, the converter is decreased input power factor and is increased system size. To improved these, this paper proposes a PSM(Pulse Size Modulation) control strategy operated with high power factor.

  • PDF

A study on the PWM type High Speed Electromagnet (PWM 방식 고속 전자석에 관한 연구)

  • Song, Chang-Seop;Yang, Hae-Jeong;Song, Sung-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.127-135
    • /
    • 1994
  • This paper is concerned about a high speed electromagnet of Pressure control solenoid valve. Solenoid valve is controlled by means of Pulse width modulation. The magnetostatic field problem on a solenoid is numerically solved by the 2-D axisymmetric finite element method. And permeance method is adopted for analysing the static and dynamic property of solenoid part theoretically. In addition, in this study, experiments on solenoid part were performed in order to measure the magnetic force and plunger displacement. The numerical results coincided with the experimental results. As a result, the magnetic force has the linear relation with displacement of plunger and the primary factors on the performance of PWM type high speed electromagnet are coil resistance, plunger mass, and the length of air gap between plunger and core.

  • PDF

Fast Preprocessing Technique based on High-Pass Filtering for Spool Rate Extraction of Weak JEM Signals (약한 제트 엔진 변조 신호의 Spool Rate 추출을 위한 High-Pass Filtering 기반의 빠른 전처리 기법)

  • Song, Won-Young;Kim, Hyung-Ju;Kim, Sung-Tai;Shin, In-Seon;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.380-388
    • /
    • 2019
  • Jet engine modulation(JEM) signals are widely used for target recognition. These signals coming from a potentially hostile aircraft provide specific information about the jet engine. In order to obtain the number of blades, which is uniquely provided by the JEM signal, one must extract the spool rate, which is the rotation speed of the blades. In this paper, we propose an algorithm to extract the spool rate from a weak JEM signal. A criterion is developed to extract the spool rate from the JEM signal by analyzing the intensity of the JEM signal component. The weak signal is first subjected to a high-pass filtering-based process, which modifies it to facilitate spool rate extraction. We then apply a peak detection process and extract the spool rate. The technique is simpler than the existing CEMD or WD method, is accurate, and greatly reduces the time required.

Block Turbo Codes for High Order Modulation and Transmission Over a Fast Fading Environment (고차원변조 방식 및 고속 페이딩 전송 환경을 위한 블럭터보부호)

  • Jin, Xianggunag;Kim, Soo-Young;Kim, Won-Yong;Cho, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.420-425
    • /
    • 2012
  • A forward error correction (FEC) coding techniques is one of time diversity techniques with which the effect of channel impairments due to noise and fading are spreaded over independently, and thus the performance could be improved. Therefore, the performance of the FEC scheme can be maximized if we minimize the correlation of channel information across over a codeword. In this paper, we propose a block turbo code with the maximized time diversity effect which may be reduced due to utilization of high order modulation schemes and due to transmission over a comparatively fast fading environment. Especially, we propose a very simple formula to calculate the address of coded bit allocation, and thus we do not need any additional outer interleavers, i.e., inter-codeword interleavers. The simulation resuts investigated in this paper reveal that the proposed scheme can provide the performance gain of more than a few decibels compared to the conventional schemes.

Study on DPSAM Turbo TCM in Time-Selective Fading Channels (시간 선택적 페이딩 채널 환경에서 DPSAM Turbo TCM에 관한 연구)

  • Kim, Jeong-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.107-113
    • /
    • 2013
  • Mobile mobility and data reliability should be guaranteed as well as amounts of data services are essential in the era of smart media. In order to improve the reliability of high-speed data, strong channel coding and modulation techniques are required. In this paper, the structure of Turbo TCM decoder, applying high-order modulation techniques and the DPSAM method which improves performances in time-selective fading channels in the case of burst errors are suggested through the optimal decoding method and iteration decoding so as to improve bandwidth efficiency in Turbo Codes with excellent encoding gain. The proposed method in comparison with the existing method is that 3dB is superior in case that BER is $10^{-2}$ and the number of iterations is 3. In addition, the function is improved at approximately 6dB in case that BER is $10^{-3}$ and the number of iterations is 7. The proposed method requires additional bandwidth; however, the bandwidth loss can be overcome through Turbo TCM technology on the additional bit rate from the bandwidth loss.

A 3.3V, 68% power added efficieny, GaAs power MESFET for mobile digital hand-held phone (3.3V 동작 68% 효율, 디지털 휴대전화기용 고효율 GaAs MESFET 전력소자 특성)

  • 이종남;김해천;문재경;이재진;박형무
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.6
    • /
    • pp.41-50
    • /
    • 1995
  • A state-of-the-arts GaAs power metal semiconductor field effect transistor (MESFET) for 3.3V operation digital hand-held phone at 900 MHz has been developed for the first time, The FET was fabricated using a low-high doped structures grown by molecular beam epitaxy (MBE). The fabricated MESFETs with a gate width of 16 mm and a gate length of 0.8 .mu.m shows a saturated drain current (Idss) of 4.2A and a transconductance (Gm) of around 1700mS at a gate bias of -2.1V, corresponding to 10% Idss. The gate-to-drain breakdown voltage is measured to be 28 V. The rf characteristics of the MESFET tested at a drain bias of 3.3 V and a frequencyof 900 MHz are the output power of 32.3 dBm, the power added efficiency of 68%, and the third-ordr intercept point of 49.5 dBm. The power MESFET developed in this work is expected to be useful as a power amplifying device for digital hand-held phone because the high linear gain can deliver a high power added efficiency in the linear operation region of output power and the high third-order intercept point can reduce the third-order inter modulation.

  • PDF

Analysis of PLL Phase Noise Effect for High Data-rate Underwater Communications

  • Lee, Chong-Hyun;Bae, Jin-Ho;Hwang, Chang-Ku;Lee, Seung-Wook;Shin, Jung-Chae
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.205-210
    • /
    • 2011
  • High data-rate underwater communications is demanded. This demand imposes stringent requirements on underwater communication equipment of phase-locked-loop (PLL). Phase noise in PLL is unwanted and unavoidable. In this paper, we investigate the PLL phase noise effect on high order QAM for underwater communication systems. The phase noise model using power spectral density is adopted for performance evaluation. The phase noise components considered in PLL are reference oscillator, voltage controlled oscillator (VCO), filter and divider. The filters in PLL noise are assumed to be second order active and passive low pass filters. Through simulation, we analyze the phase noise characteristics of the four components and then investigate the performance improvement factor of each component. Consequently, we derive specifications of VCO, phase detector, divider to meet performance requirement of high data-rate communication using QAM under phase noise influence.

Performance Evaluation of a Novel Chaos Transceiver for the High Level Modulation (고레벨 변조를 위한 새로운 카오스 송수신기의 성능 평가)

  • Lee, Jun-Hyun;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Security of chaos communication system that has characteristic of sensitive initial conditions is superior to digital communication systems, but BER(Bit Error Rate) performance is evaluatied badly. So, studies in order to improve the BER performance is important. existing studies, BER performance of proposed chaos transceiver is possible to improve than the CDSK(Correlation Delay Shift Keying) system because it has characteristic that has very few addition elements like noise signal except for the desired signal. Chaos communication system has many symbols because it spreads according to characteristic of chaos map. Therefore, study that can have the good data rate in chaos communication system is required. Information bits of existing chaos modulation system are modulated as -1 and 1 on the basis of BPSK system. However, instead of BPSK system, if chaos communication system is applied high level modulation systems such as QPSK system and 16QAM system, it is possible to have good data rate because more data are transmitted at a time. In the paper, when QPSK system and 16QAM system are applied to proposed chaos transceiver in existing study, we evaluate the SER(Symbol Error Rate) performance and compare the each performance. Also, when QPSK system and 16QAM system are applied to proposed chaos transceiver, we evaluate the anti-jamming performance of proposed system.

Adaptive Power Control Using Large Scale Antenna of the Massive MIMO System in the Mobile Communication

  • Ha, Chang-Bin;Jang, Byung-Jun;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3068-3078
    • /
    • 2015
  • Although the massive MIMO system supports a high throughput, it requires a lot of channel information for channel compensation. For the reduction of overhead, the massive MIMO system generally uses TDD as duplexing scheme. Therefore, the massive MIMO system is sensitive to rapidly changing fast fading in according to time. For the improvement of reduced SINR by fast fading, the adaptive power control is proposed. Unlike the conventional scheme, the proposed scheme considers mobility of device for adaptive power control. The simulation of the proposed scheme is performed with consideration for mobility of device. The result of the simulation shows that the proposed scheme improves SINR. Since SINR is decreased in according to the number of device in the network by unit of cell, each base station can accommodate more devices by the proposed scheme. Also, because the massive MIMO system with high SINR can use high order modulation scheme, it can support higher throughput.

Matrix Decomposition for Low Computational Complexity in Orthogonal Precoding of N-continuous Schemes for Sidelobe Suppression of OFDM Signals

  • Kawasaki, Hikaru;Matsui, Takahiro;Ohta, Masaya;Yamashita, Katsumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • N-continuous orthogonal frequency division multiplexing (OFDM) is a precoding method for sidelobe suppression of OFDM signals and seamlessly connects OFDM symbols up to the high-order derivative for sidelobe suppression, which is suitable for suppressing out-of-band radiation. However, it severely degrades the error rate as it increases the continuous derivative order. Two schemes for orthogonal precoding of N-continuous OFDM have been proposed to achieve an ideal error rate while maintaining sidelobe suppression performance; however, the large size of the precoder matrices in both schemes causes very high computational complexity for precoding and decoding. This paper proposes matrix decomposition of precoder matrices with a large size in the orthogonal precoding schemes in order to reduce computational complexity. Numerical experiments show that the proposed method can drastically reduce computational complexity without any performance degradation.