• Title/Summary/Keyword: High level synthesis

Search Result 400, Processing Time 0.029 seconds

The protective effects of Aster yomena (Kitam.) Honda on high-fat diet-induced obese C57BL/6J mice

  • Kim, Min Jeong;Kim, Ji Hyun;Lee, Sanghyun;Kim, Bohkyung;Kim, Hyun Young
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.46-59
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Aster yomena (Kitam.) Honda (AY) has remarkable bioactivities, such as antioxidant, anti-inflammation, and anti-cancer activities. On the other hand, the effects of AY against obesity-induced insulin resistance have not been reported. Therefore, this study examined the potential of AY against obesity-associated insulin resistance in high-fat diet (HFD)-fed mice. MATERIALS/METHODS: An obesity model was established by feeding C57BL/6J mice a 60% HFD for 16 weeks. The C57BL6/When ethyl acetate fraction from AY (EFAY) at doses of 100 and 200 mg/kg/day was administered orally to mice fed a HFD for the last 4 weeks. Normal and control groups were administered water orally. The body weight and fasting blood glucose were measured every week. Dietary intake was measured every other day. After dissection, blood and tissues were collected from the mice. RESULTS: The administration of EFAY reduced body and organ weights significantly compared to HFD-fed control mice. The EFAY-administered groups also improved the serum lipid profile by decreasing the triglyceride, total cholesterol, and low-density lipoprotein compared to the control group. In addition, EFAY ameliorated the insulin resistance-related metabolic dysfunctions, including the fasting blood glucose and serum insulin level, compared to the HFD-fed control mice. The EFAY inhibited lipid synthesis and insulin resistance by down-regulation of hepatic fatty acid synthase and up-regulation of the AMP-activated protein kinase pathway. EFAY also reduced lipid peroxidation in the liver, indicating that EFAY protected hepatic injury induced by obesity. CONCLUSIONS: These results suggest that EFAY improved obesity-associated insulin resistance by regulating the lipid and glucose metabolism, suggesting that AY could be used as a functional food to prevent obesity and insulin resistance.

Diversity and Genetic Relationships among Seven West African Goat Breeds

  • Missohou, A.;Talaki, E.;Laminou, I. Maman
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1245-1251
    • /
    • 2006
  • This study was carried out to determine the genetic relationships among seven west African goat breeds : Casamance Goat (Kolda, Senegal), Labe Goat (Fouta Djallon, Guinea), three Sahel Goat (Djoloff, Senegal ; Maradi, Niger; Gorgol, Mauritania) red Sokoto Goat (Maradi, Niger) and Guera goat (Atar, Mauritania).The polymorphism of six microsatellites and the ${\alpha}_{s1}$-casein locus was analysed. The six microsatellite loci were polymorphic with a mean number of alleles ranging from 2.71 to 4.0. At the ${\alpha}_{s1}$-casein locus, A and B were the most frequent alleles, which are known to be associated with a high level of protein synthesis. A neighbour-joining tree and a Principal Component Analysis were performed and the reliability of both methods was tested. Our study shows that the genetic relationships among the breeds analysed correspond to their geographical distribution and in addition, that the Labe Goat is strongly separated from the other breeds. Among the seven markers used, four have an effect on the distribution of breeds while three seem to be non-informative.

Efficient Visible Light Activated Anion Doped Photocatalysts (효율적인 가시광 활성 음이온 도핑 광촉매)

  • In, Su-Il
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.505-509
    • /
    • 2011
  • Visible light-activated photocatalysts (based on doped titania) are the subject of intensive current research due to the promise they offer in relation to solar powered systems for photocatalysis, hybrid systems for $CO_2$ conversion and hydrogen production from water. Current synthetic methodologies suffer from one or more serious shortcomings, which seriously hinder practical application. These include high cost, irreproducibility, difficulty in controlling the dopant level and unsuitability for scale up. In this review new reproducible and controllable methods (developed by Lambert group, Cambridge University) allowing the synthesis of practical quantities of efficient, visible light active anion (e.g. N, C and B) doped $TiO_2$ photocatalysts are summarized.

Carnitine and Calmodulin N-Methylation in Rat Testis; Calmodulin May beInvolved in Carnitine Biosynthesis

  • Oh, Suk-Heung;Cha, Youn-Soo;Sohn, Hee-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.251-255
    • /
    • 1998
  • Rat testis known to contain all of the enzymes required for carnitine biosynthesis also contains high concentration of calmodulin, a protein which may or may not contain trimethyllysine, the major substrate in carnitine biosynthesis. The purpose of this study was to investigate the levels of carnitine and the state of calmodulin N-methylation in rat testes, and to discuss the possibility of the involvement of calmodulin incarnitine biosynthesis. Nonesterified carnitine , acid soluble acyl carnitine, and acid insoluble acyl carnitine of ra tests were 273 nmole, 62nmole, and 4 nmole/g tissue, respectively. Total carnitine level was 339 nmole/g testes tissue. Calmodulin purified from rat tests was assayed for methylation potential using N-methyltransferase from the rat testes. Rat testes calmodulin showed no 3H-methyl incorporation indicating that the calmodulin was trimethylated already by endogenous calmodulin N-methyltransferase. Amino acid composition analysis revealed that the rat testes calmodulin containd one mole of trimethyllysine per mole of calmodulin. These data suggest that testes calmodulin could provide the trimethyllysine needed for the synthesis of carnitine in the rat tests.

  • PDF

Free Radical Scavenging Activity and Inhibition of Linoleic Acid Peroxidation of Commercial Tocotrienol Fraction

  • Kim, Joo-Shin;Chung, Hau-Yin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.177-180
    • /
    • 2007
  • Tocotrienols (T3) are minor plant constituents found abundantly in rice bran, which provide a significant source of vitamin E in animal feeds. T3 was reported to have an intrinsic hypocholesterolemic effect by inhibiting HMG-Co A reductase. It has similar antioxidative properties as tocopherols in food and biological system due to their similar chemical structures. However, the antioxidant activity and mechanism of T3 to scavenge free radicals and to inhibit the peroxidation of linoleic acid are less understood. The purpose of this study was to investigate the scavenging effect of T3 on free radicals and its inhibition of peroxide formation. Free radical scavenging activity was monitored by the DPPH (1,1-diphenyl-2-picrylhydrazyl) method whereas inhibition of linoleic acid peroxidation was evaluated using the thiocyanate method. Thiobarbituric acid (TBA) test was used to determine malonaldehyde formation from linoleic acid peroxidation. Free radical scavenging activity increased with increasing concentration levels of T3. T3 exhibited 38.2, 78.6, 92.7 and 96.2% radical scavenging activity at concentrations of 2, 8, 32 and 128 ppm, respectively. At 128 ppm, it was highly effective in inhibiting linoleic acid peroxidation. The activity of T3 evaluated by the thiocyanate method showed low absorbance values indicating a high level of antioxidant activity. All treatments showed similar trends in antioxidant activity when evaluated by both the thiocyanate method and TBA test.

Subcellular Location of Spodpotera Cell-expressed Human HepG2-type Glucose Transport Protein

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.160-164
    • /
    • 2012
  • The baculovirus/insect cell expression system is of great value for the large-scale production of normal and mutant mammalian passive glucose-transport proteins heterologously for structural and functional studies. In most mammalian cells that express HepG2, this transporter isoform is predominantly located at the cell surface. However, it had been reported that heterologous expression of other membrane proteins using the baculovirus system induced highly vacuolated cytoplasmic membranes. Therefore, how a cell responds to the synthesis of large amounts of a glycoprotein could be an interesting area for investigation. In order to examine the subcellular location of the human HepG2 transport proteins when expressed in insect cells, immunofluorescence studies were carried out. Insect cells were infected with the recombinant baculovirus AcNPVHIS-GT or with wild-type virus at a MOI of 5, or were not exposed to viral infection. A high level of fluorescence displayed in cells infected with the recombinant virus indicated that transporters are expressed abundantly and present on the surface of infected Sf21 cells. The evidence for the specificity of the immunostaining was strengthened by the negative results shown in the negative controls. Distribution of the transporter protein expressed in insect cells was further revealed by making a series of optical sections through an AcNPVHIS-GT-infected cell using a confocal microscope, which permits optical sectioning of cell sample. These sections displayed intense cytoplasmic immunofluorecence surrounding the region occupied by the enlarged nucleus, indicating that the expressed protein was present not only at the cell surface but also throughout the cytoplasmic membranous structures.

Present Status and Future Prospect of Quantum Dot Technology (양자점 (Quantum dot) 기술의 현재와 미래)

  • Hong, H.S.;Park, K.S.;Lee, C.G.;Kim, B.S.;Kang, L.S.;Jin, Y.H.
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.451-457
    • /
    • 2012
  • Nowadays, research and development on quantum dot have been intensively and comprehensively pursued worldwide in proportion to concurrent breakthrough in the field of nanotechnology. At present, quantum dot technology forms the main interdisciplinary basis of energy, biological and photoelectric devices. More specifically, quantum dot semiconductor is quite noteworthy for its sub-micro size and possibility of photonic frequency modulation capability by controlling its size, which has not been possible with conventionally fabricated bulk or thin film devices. This could lead to realization of novel high performance devices. To further understand related background knowledge of semiconductor quantum dot at somewhat extensive level, a review paper is presently drafted to introduce basics of (semiconductor) quantum dot, its properties, applications, and present and future market trend and prospect.

INTRACELLULAR AMINO ACID PROFILE OF RUMEN BACTERIA AS INFLUENCED BY UREA FEEDING AND ITS DURATION

  • Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.4
    • /
    • pp.619-622
    • /
    • 1993
  • Rumen bacterial amino acids in sheep on urea diet were monitored to assess a possible change in amino acid synthesis as a long term response to high rumen ammonia environment. A sheep was fed a semipurified diet with soybean meal, followed by a diet with urea as a main nitrogen source. Mixed rumen bacteria were harvested from ruminal fluid taken 3 h after feeding (twice in soybean meal feeding and 6 times in urea feeding) and fractionated as cell wall, proteins and protein-free cell supernatant of monitor amino acids in each fraction. Ruminal ammonia concentration at the sampling ranged from 5.7 to 39.5 mgN/dl. Cell wall and protein fractions of mixed rumen bacteria were stable in their amino acid composition regardless of nitrogen sources of diet and the feeding duration. However, protein-free cell supernatant fraction showed a higher alanine proportion with urea feeding (18.6 and 28.2 molar % of alanine for samples from sheep fed soybean meal and urea, respectively) and its duration (20.6 and 32.9 molar % for samples from sheep on urea diet for 1 and 65 days, respectively). Total free amino acid level of bacteria was depressed in the initial period of urea feeding but restored on 65th day of the feeding. These results suggest that an alanine synthesizing system may develop in rumen bacteria as urea feeding becomes longer.

MR304-1, A Melanin Synthesis Inhibitor Produced by Trichoderma harzianum (Trichoderma harzianum이 생산하는 melanin 생성 저해물질 MR304-1)

  • Lee, Choong-Hwan;Chung, Myung-Chul;Lee, Ho-Jae;Lee, Ke-Ho;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.641-646
    • /
    • 1995
  • During the screening of inhibitors of melanin biosynthesis from microbial secondary metabolites, a fungal strain MR304 which was capable of producing high level of an inhibitor was selected. Based on taxonomic studies, this fungus could be classified as Trichoderma harzianum. The active compound (MR304-1) was purified from culture broth by Diaion HP-20 column chromatography, ethylacetate extraction, Sephadex LH-20 column chromatographv and HPLC. The inhibitor was identified as 3-(1,5-dihvdroxy-3-isocyanocyclopent-(E)-3-envl)prop-2-enoate by spectroscopic methods of UV, ESIMS, $^{1}$H-NMR, $^{13}$C-NMR, NOE, HMQC and HMBC. MR304-1 showed strong mushroom tyrosinase inhibitory activity with IC$_{50}$ value of 0.25 $\mu $g/ml. It inhibited melanin biosynthesis with 15 mm inhibition zone at 30 $\mu $g/paper disc in Streptomyces bikiniensis, a bacterium used as an indicator organism in this work. It also inhibited melanin biosynthesis in B16 melanoma cells with a niinimum inhibitory concentration of 0.05 $\mu $g/ml.

  • PDF

Di-acetyl-nor-aporphines: Novel molecules and a novel mechanism to inhibit melanogenesis

  • Lintner, Karl;Peschard, Olivier;Leroux, Richard;Mondon, Philippe;Lamy, Francois
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.268-284
    • /
    • 2003
  • Nor-aporphine derivatives have been discovered which interfere with the flux of Calcium into and out of the cell interior. It has been shown that adrenergic antagonists that block the Calcium exchange lead to an inhibition of Protein kinase C activity, thus blocking tyrosinase activation. Di-acetyl-dimethoxy-methyl-nor-aporphine is a semi-synthetic molecule of natural origin with very high potency. On B16 melanocytes as well as in normal human melanocytes the decrease in melanin synthesis reaches -50% at a level of 40 ppm in the culture medium. On a molar concentration basis, this is 50 to 70 times stronger than Kojic acid inhibition. Yet, the cell viability is not affected. Reversibility studies show that after washing out of the active compound, melanogenesis returns to normal levels. Possible mechanisms of the activity are discussed. Tests carried out on SkinEthic(R) three-dimensional models of the epidermis and in vivo clinical studies on Asian population confirm the strong inhibition of melanogenesis. Safety evaluation of these molecules, on the other hand, demonstrates good skin tolerance and absence of toxicity.

  • PDF