• 제목/요약/키워드: High kinetic isotope effects

검색결과 8건 처리시간 0.019초

Oxidation of Benzyl Alcohols with Extraordinarily High Kinetic Isotope Effects

  • Jo, Myeong-Ran;Seok, Won-K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.3003-3008
    • /
    • 2011
  • Reactions of benzyl alcohol and its derivatives by [Ru$^{IV}$(tpy)(dcbpy)(O)]$^{2+}$ (tpy = 2,2':6',2"-terpyridine; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) leading to the corresponding benzaldehydes in acetonitrile and water have been studied. Kinetic studies show that the reaction is first-order in both alcohol and oxidant, with k = 1.65 (${\pm}$ 0.1) $M^{-1}s^{-1}$ at $20^{\circ}C$, ${\Delta}H^{\ddag}$ = 4.3 (${\pm}$ 0.1) kcal/mol, ${\Delta}S^{\ddag}$ = -22 (${\pm}$ 1) eu, and $E_a$ = 4.9 (${\pm}$ 0.1) kcal/mol. High ${\alpha}$ C-H kinetic isotope effects are observed, but O-H solvent isotope effects are negligible. Spectral evidences with the isotope effects suggest that oxidation of benzyl alcohols occurs by a two-electron, hydride transfer. The catalytic cycles of aerobic benzyl alcohol oxidation are employed.

2-염화티오펜술포닐의 가용매 분해반응 (Solvolysis of 2-Thiophenesulfonyl Chloride)

  • 최진철;오지은;강대호;구인선;이익춘
    • 대한화학회지
    • /
    • 제37권8호
    • /
    • pp.695-701
    • /
    • 1993
  • 25$^{\circ}C$에서 메탄올, 에탄올, 아세톤 이성분 혼합수용액과 물, 메탄올에서의 가용매분해반응 속도 상수를 결정하고, 이들 속도자료를 Grunwald-Winstein 식과 Kivinen 관계식을 이용하여 해석하였다. 또한 물과 메탄올에서의 속도론적 용매 동위원소 효과와 알코올-물 혼합용매계에서 생성물 선택성 값을 결정하였다. 염화 2-티오펜술포닐의 가용매 분해반으에 대한 속도론적 용매 동위원소 효과는 메탄올과 물에서 각가 2.24와 1.47이었다. 에탄올-물에서의 술포닐 에스테르 형성에 대한 선택성 값은 최대값을 나타내었다. 메탄올과 물에서의 속도론적 용매 동위원소 효과, 알코올 수용액에서의 선택성 자료와 용매효과로부터, 본 연구에서의 반응은 극성이 낮은 용매계에서는 일반염기 촉매반응과 또는 S$_A$N 반응이 유리하고, 극성이 큰 용매계에서는 S$_N$2 반응의 유리한 반응으로 진행되는 것으로 제안하였다.

  • PDF

Kinetic Studies of the Solvolyses of 4-Nitrophenyl Phenyl Thiophosphorochloridate

  • Koh, Han-Joong;Kang, Suk-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2413-2418
    • /
    • 2009
  • Rates of solvolyses of 4-nitrophenyl phenyl thiophosphorochloridate (4-N$O_2$PhOP(S)(Cl)OPh, $\underline{1}$) in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, acetone, and 2,2,2-trifluroethanol (TFE) are reported. Thermodynamic parameters were determined at several temperatures in three representative solvents. The extended Grunwald-Winstein equation was applied to 29 solvents and the correlation coefficient (R) showed 0.959. The sensitivities (l = 1.37 and m = 0.62) are similar to those obtained for diphenyl thiophosphorochloridate (($PhO)_2$PSCl, $\underline{2}$), diphenyl phosphorochloridate (($PhO)_2$POCl, $\underline{3}$), diphenyl phosphinic chloride ($Ph_2$POCl, $\underline{4}$), and diphenyl thiophosphinic chloride ($Ph_2$PSCl, $\underline{5}$). The solvolytic reaction mechanism of 4-nitrophenyl phenyl thiophosphorochloridate ($\underline{1}$) is suggested to be proceeded a $S_N$2 process as previously reported result. The activation enthalpies are shown as slightly low as ${\Delta}H^{\neq}\;=\;9.62\;to\;11.9\;kcal{\cdot}mol^{-1}$ and the activation entropies are shown as slightly high negative value as ${\Delta}S^{\neq}\;=\;-34.1\;to\;-44.9\;cal{\cdot}mol^{-1}{\cdot}K^{-1}$ compared to the expected $S_N$2 reaction mechanism. Kinetic solvent isotope effects are accord with a typical $S_N$2 mechanism as shown in the range of 2.41 in MeOH/ MeOD and 2.57 in $H_2O/D_2O$ solvent mixtures.

Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions

  • Park, Kyoung-Ho;Lee, Yelin;Lee, Yong-Woo;Kyong, Jin Burm;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3657-3664
    • /
    • 2012
  • Reactions of 1-adamantylmethyl chloroformate ($1-AdCH_2OCOCl$, 1) and 1-adamantylmethyl fluoroformate ($1-AdCH_2OCOF$, 2) in hydroxylic solvents have been studied. Application of the extended Grunwald-Winstein (G-W) equation to solvolyses of 1 in a variety of pure and binary solvents indicates an addition-elimination pathway in the majority of the solvents except an ionization pathway in the solvents of relatively low nucleophilcity and high ionizing power. The solvolyses of 2 show an addition-elimination pathway in all of the mixed solvents. The leaving group effects ($k_F/k_{Cl}$), the kinetic solvent isotope effects (KSIEs, $k_{MeOH}/k_{MeOD}$), and the enthalpy and entropy of activation for the solvolyses of 1 and 2 were also calculated. The selectivity values (S) for each solvent composition are reported and discussed. These observations are compared with those previously reported for other alkyl haloformate esters.

Kinetics and Mechanism of the Addition of Benzylamines to Benzylidene Meldrum's Acids in Acetonitrile

  • Oh, Hyuck-Keun;Kim, Tae-Soo;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권2호
    • /
    • pp.193-196
    • /
    • 2003
  • Nucleophilic addition reactions of benzylamines $(XC_6H_4CH_2NH_2)$ to benzylidene Meldrum's acids (BMA; $YC_6H_4CH=C(COO)_2C(CH_3)_2$) have been investigated in acetonitrile at 20.0 ℃. The rates of addition are greatly enhanced due to the abnormally high acidity of Meldrum's acid. The magnitudes of the Hammett $({\rho}_X\;and\;{\rho}_Y)$ and Bronsted $({\rho}_X$)$ coefficients are rather small suggesting an early transition state. The sign and magnitude of the cross-interaction constant, ${\rho}_{XY}$ (= -0.33), and kinetic isotope effects $(k_H/k_D\;{\stackrel}{~}{=}\;1.5-1.7)$ involving deuterated benzylamine nucleophilies $(XC_6H_4CH_2ND_2)$ are indicative of hydrogen-bonded cyclic transition state. The activation parameters, ${\Delta}H^{\neq}\;{\stackrel}{~}{=}\;4\;kcal\;mol^{-1}\;and\;{\Delta}S^{\neq}\;{\stackrel}{~}{=}\;-37\;e.u.$, are also in line with the proposed mechanism.

벤토나이트의 일라이트화에 의한 세슘 수착 특성 변화 연구 (Effects of Bentonite Illitization on Cesium Sorption)

  • 황정환;정성욱;한원식;윤원우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권5호
    • /
    • pp.29-38
    • /
    • 2021
  • This study investigated the mineralogical properties of bentonite and illite and evaluated the Cs sorption at various concentrations (Cw≈1-105 ㎍/L). Bentonite samples, collected from South Korea and USA, majorly consisted of Ca- and Na-montmorillonite, showed large cation exchange capacity (CEC, 91.4 and 47.3 meq/100 g) and specific surface area (SSA, 46.1 and 39.7 m2/g). In contrast, illite sample (USA) had relatively low values for 14.4 meq/100g of CEC and 29.3 m2/g of SSA, respectively. Bentonite and illite had different non-linear sorption for Cs along with Cw. At low Cw<10 ㎍/L, illite showed higher sorption capacity than bentonite despite low CEC because of the existence of specific sorption sites at the weathered mineral edge. However, as Cw increased, bentonite represented high sorption capacity because the cation exchange between Cs and interlayer cations was effective at high Cw conditions. These results implicated that the Cs concentration is important to evaluate the sorption performance of bentonite and illite. Finally, the Cuadros' kinetic model for illitization using various K concentrations (2×10-5 and 1.7×10-3 mol/L) and temperature (100-200℃) showed that up to 50% of the montmorillonite in bentonite could be converted to illite, suggesting that the illitization should be considered to evaluate the sorption performance of the bentonite in deep geological disposal repository.

Hydrogeochemical and geostatistical study of shallow alluvial groundwater in the Youngdeok area

  • Kim, Nam-Jin;Yun, Seong-Taek;Kwon, Man-Jae;Kim, Hyoung-Soo;Kim, Chang-Hoon;Koh, Yong-Kwon
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.232-236
    • /
    • 2000
  • Multi-regression statistical analyses were applied for the water quality data of shallow alluvial ground water (n = 47) collected from the Youngdeok area, in order to quantitatively generalize the natural (non-anthropogenic) causes of regional water quality variation. Seven samples having the high contamination index ( $C_{a}$ > 3) reflect the striong effects by anthropogenic activity. Most of the alluvial groundwaters have acquired their quality primarily due to the dissolution of carbonate minerals. The results of multi-regression analysis show that chlorine is mainly derived from seawater effect. Sulfur isotopic compositions of dissolved sulfur and the S $O_4$/Cl ratio also enable us to discriminate the samples (n = 18) which are affected by atmospheric input of marine aerosol (sea-spray) and also by mixing between freshwater and seawater. Hydrogen and oxygen isotope data of the samples collected lie close to the local meteoric water line obtained from nearby Pohang city but has lower slope (5.45) on the $\delta$D-$^{18}$ O plot, indicating that alluvial groundwater was recharged from infiltrated meteoric water which has undergone some degree of kinetic evaporation. The estimated initial isotopic composition of the recharged water ($\delta$D = -74.8$^{0}$ /$_{00}$, $\delta$$^{18}$ O = -10.8$^{[-1000]}$ /$_{[-1000]}$ ) suggests that the alluvial ground water recharge largely occurs during summer storm events.s.s.

  • PDF

계면활성제 용액속에서의 화학반응 (제 2 보). 카르복시산 에스테르의 가수 분해 반응에 미치는 2-알킬벤즈이미다졸-5-술포네이트의 친핵적 및 미셀효과 (Chemical Reactions in Surfactant Solutions (II). Nucleophilic and Micellar Catalyses of Sodium 2-Alkylbenzimidazole-5-sulfonates on Hydrolyses of Carboxylic Esters in Aqueous and CTABr Solutions)

  • 홍영석;김정배;박희현;이대룡
    • 대한화학회지
    • /
    • 제33권1호
    • /
    • pp.97-105
    • /
    • 1989
  • CTABr 미셀용액 속에서의 2-alkylbenzimidazole(R-BI) 및 sodium 2-alkylbenzimidazole-5-sulfonate(R-BISO$_3$Na)에 의해 추진되는 p-nitrophenyl carboxylic esters(p-NPCE)들의 가수분해반응에 대한 미셀효과를 다루었다. 이들 반응은 각각 BI 및 BISO$_3$Na에 의해 추진되는 반응의 속도보다 현저히 감소하고, 알킬기가 methyl에서 heptyl로 길어질수록 감소의 정도가 더욱 크다. 이것은 CTABr을 포함하지 않는 수용액속에서의 BISO$_3$Na와 R-BISO$_3$Na에 의한 가수분해 반응속도가 별차이가 없음을 감안 할 때, 미셀의사층(micellar pseudophase) 내에서 이들 친핵체의 알킬기가 입체장해(steric hindrance)로 작용하기 때문이다. 이것은 수용액과 미셀용액 속에서의 반응의 측정된 홀성화에너지(${\Delta}H{\neq},\;{\Delta}G{\neq}$${\Delta}S{\neq}$)의 값과도 정성적으로 일치하고 있다. 한편, nonyl기에서 pentadecyl기까지의 긴 알킬기를 갖고 있는 R-BISO$_3$Na는 그것의 imidazole 부분(BI moiety)이 친핵체로 작용할 뿐 아니라, 이들은 CTABr을 포함하지 않는 수용액속에서 미셀을 형성하고, 그 결과 기질인 p-NPCE를 쉽게 수용하여 반응속도를 촉진시키는 것으로 판단된다. R-BISO$_3$Na에 의한 이들 p-NPCE들의 가수분해반응의 mechanism을 알기위하여 중수소 동위원소효과(kinetic isotope effect)를 측정하였다. $k'_{H_2O}/K'_{D_2O}$값이 약 2.5∼3.2의 범위로서, 이 값은 R-BISO$_3$Na가 친핵체로만 작용한다고 보기에는 너무 높고, 일반염기로 작용한다고 보기에는 너무 낮다. 따라서 CTABr 미셀용액 속에서의 이 반응은 이 두 mechanism에 의해 동시적으로 진행된다고 생각된다.

  • PDF