• Title/Summary/Keyword: High frequency ultrasound

Search Result 115, Processing Time 0.029 seconds

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

Fabrication and Evaluation of High Frequency Ultrasound Receive Transducers for Intravascular Photoacoustic Imaging (혈관내 광음향 영상을 위한 고주파수 초음파 수신 변환기 제작 및 평가)

  • Lee, Jun-Su;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.300-308
    • /
    • 2014
  • Photoacoustic imaging is a useful tool for the diagnosis of atherosclerosis because it is capable of providing anatomical and pathological information at the same time. A photoacoustic signal detector is a pivotal element to achieve high spatial resolution, so that it should have broadband spectrum with a high center frequency. Since a photoacoustic imaging probe is directly inserted into blood vessel to diagnose atherosclerosis, the total size of the photoacoustic signal detector should be less than 1 mm. The main purpose of this paper is to demonstrate that PVDF can be used as an active material for the photoacoustic signal detector with a high frequency and broadband characteristic. The photoacoustic signal detector developed in this study was a single element ultrasound transducer with an aperture of $0.5{\times}0.5mm$ and the total size of 1 mm. In the design stage, the natural focal depth was adjusted for an effective focal area to cover the region of interest, i.e., 1~5 mm in depth. This was because geometrical focusing could not be used due to the small aperture. Through a pulse-echo test, it was ascertained that the developed photoacoustic signal detector has the -6 dB bandwidth ranging between 40.1 and 112.8 MHz and the center frequency of 76.83 MHz.

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

Simulation of Excitation and Propagation of Pico-Second Ultrasound

  • Yang, Seungyong;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.457-466
    • /
    • 2014
  • This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

Particle Monitoring Using Ultrasound in the Gas Flow (초음파를 이용한 기체 유동장내 분진 모니터링)

  • Jhang Kyung-young;Kim Joo-chul;Kim Hong-jun;Hwang Won-ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.78-85
    • /
    • 2004
  • The particle amount monitoring technique using ultrasound is proposed to determine the proper maintenance time of the filter in the supply process of pure gas in the unit of oxygen plant. There are advantages that it is adaptable in high temperature and high pressure, and it is not disturbed by being exposed in the gas flow, and it can be implemented very economically. The applicability of the ultrasonic technique is pre-studied through the theoretical analysis for the dependency of attenuation of ultrasonic wave on the particles in the gas flow. For the purpose, absorption, scattering and dispersion models are considered, and the attenuation by absorption and the change rate of the propagation speed are calculated fur the specific range of particle size and the ultrasonic wave frequency. It was expected by simulation that the absorptive attenuation by particles was the most sensitive to the change of particle amount. The experimental result showed high correspondence with the theoretical expectation so that this ultrasound attenuation measurement was proved to be highly effective for monitoring the amount of floating particles in the gas flow.

An Application of High-Power Ultrasound to Rubber Recycling

  • Hong, Chang-Kook;Isayev, A.I.
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.103-121
    • /
    • 2003
  • The application of powerful ultrasound to rubber recycling is a very recent field of study. An ultrasonic field creates high frequency extension-contraction stresses by acoustic cavitation. The breakdown of rubber network occurs primarily around pulsating cavities due to the highest level of strain produced by high-power ultrasound. Stronger reductions of cross-link density were observed at a higher pressure, indicating an important role of pressure during ultrasonic recycling. Visible bubbles were observed during ultrasonic treatment as a proof of acoustic cavitation. Shearing effect has a significant influence on improving the efficiency of ultrasonic treatment. After the ultrasonic treatment, the cross-link densities of NR/SBR blends were lower than those of NR and SBR due to the reduced degree of unsaturation and chemical reactions. Carbon black fillers increase the probability of bond scission during ultrasonic treatment, due to the restricted mobility. The mechanical properties of ground tire rubber (GRT)/HDPE blends were improved by ultrasonic treatment and dynamic revulcanization. Ultrasonic treatment of GRT in the presence of HDPE matrix was found to give better mechanical properties due to the chemical reactions between rubber and plastic phases.

Analysis of Cell Disruption in Microalgae Using Continuous Low Frequency Non-Focused Ultrasound (연속저주파를 이용한 미세조류 파쇄)

  • Choi, Jun-Hyuk;Kim, Gwang-Ho;Park, Jong-Rak;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.33-41
    • /
    • 2021
  • Recently, many studies have been conducted on substituting fossil fuels with bio-refineries in existing industrial systems using biomass. Among the various bio-refineries, microalgae have received wide attention because it uses inorganic compounds to produce useful substances, which are extracted by a cell disruption process. Although numerous cell disruption methods exist, cell disruption efficiency has been studied by ultrasonic treatment. Ultrasound is a high-frequency (20 kHz or higher) sound wave and causes cell disruption by cavitation when passing through a solvent. In this study, we used the microalgal species Chlorella sp., which was cultured in a plate-type photobioreactor. The experiment was conducted using a continuous low-frequency processing device. The reduction of cells with time due to cell disruption was fitted using a logistic model, and optimum conditions for highly efficient cell disruption were determined by conducting experiments under multiple conditions.

Properties of Low-Molecular Alginate by Ultrasound

  • Kim Sang-Moo;Park Seong-Min;Lee Keun-Tae;Bae Tae-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.149-154
    • /
    • 1999
  • Response Surface Methodology was applied for optimizing the processing parameters of ultrasound treatment in order to produce low-molecular alginate. The use of ultrasound significantly reduced viscosity of alginate solutions. Suggested parameters of ultrasound treatment for maximum reduction of alginate molecular weight were: specific intensity, 115.81 $W/cm^2$ at 20kHz frequency; treatment time, 35.55 min; temperature, $20.08^{\circ}C$; alginate concentration, $2.5\%$. Low-molecular alginate obtained by ultrasound had two peaks on Sepharose CL-6B gel filtration. The viscosities of control, fraction I, and fraction II at $0.1\%$ concentration and $25^{\circ}C$ were 3.07, 1.23, and 0.82cps, respectively. Molecular weights of control, fraction I, and fraction II alginates were 336,500, 70,400, and 52,800 daltons, and their solubilities were 3, 6, and $14\%$, respectively. The lower molecular weight of alginate, the lower the alcohol precipitation and the higher $Ca^{2+}$ ion binding capacities. Heavy metal ion binding capacities of alginates were high in the following order of Pb, Cd, Zn, and Co.

  • PDF

Effects of Ultrasound and High-Voltage Pulsed Current on Adjuvant-Induced Arthritis in Rats (Adjuvant로 유발된 관절염의 흰쥐에서 초음파와 고전압 맥동 전류 치료의 효과)

  • Lee, Dong-Jin;Lee, Dong-Yeop;Hwang, Don-Young
    • Physical Therapy Korea
    • /
    • v.13 no.3
    • /
    • pp.33-40
    • /
    • 2006
  • The purpose of this study was to assess the effects of High-Voltage Pulsed Current (HVPC) and ultrasound on adjuvant-induced arthritis in rats. Adjuvant arthritis was induced in female Sprauge-Dawley rats by the subcutaneous injection of a single dose of $.1m{\ell}$ of Complete Freund's Adjuvant (CFA) (1 mg of Mycobacterium Butyricum suspended in $.1m{\ell}$ paraffin oil) into the right hind paw. A randomized, parallel-groups design of 24 subjects was used. All rats were randomly assigned to control (n=8), ultrasound (n=8), and HVPC (n=8) were compared with those of injured rats. The rats in the pulsed ultrasound group were treated at 1 MHz frequency with $.5W/cm^2$ intensity in 1:4 mode for 5 minutes per day. The rats in the HVPC group were treated at 120 pulses per second and $50{\mu}s$ phase duration, 20 mA intensity for 30 min per day. Treatment was done in the left and right hind limb for 2 weeks. We evaluated clinical, radiographic, hematologic and histopathologic findings before and after treatment and obtained the following results. 1. Edema of the right hind paw was more significantly reduced in the ultrasound and HVPC groups than the control group on days 9, 12, and 14 (p<.05). Edema of the left hind paw was more significantly reduced in ultrasound and HVPC groups than the control group on days 12, 14 (p<.05). 2. WBC counts of the ultrasound and HVPC groups as compared with the control group were becoming remarkably decreased after the treatment. 3. In radiologic findings, arthritis formation was seen according to the score of arthritis, which was the highest in the control group, upon the observation of radiographs of the left and right hind paws. However, no statistically significant difference was present in the score within three groups. 4. In the histopathologic findings, ultrasound and HVPC groups had effectively suppressed erosions of articular cartilage and inflammatory cell infiltrations. Therefore, the results of the study show that rats that were treated with the ultrasound and HVPC effectively suppressed adjuvant arthritis. However, no statistically significant difference was present between the ultrasound group and the HVPC group.

  • PDF

Ultrasound Imaging for Position of the Sciatic Nerve Division in Korean Female (한국 여성에서 좌골 신경 분지 위치에 대한 초음파 영상)

  • Nam, Il Hyun;Yeo, Eui Dong;Yu, Ji Soo;Lee, Jun Ho;Lee, Young Koo
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2014
  • Purpose: We aim to determine sciatic nerve bifurcation location and depth at the level of the popliteal fossa in Korean female. Materials and Methods: Thirty three subjects were enrolled in Korean female. M-turbo ultrasound system (SonoSite, bothell, WA, USA)with 38 mm high frequency linear array transducer, 13-6 MHz probe was used for ultrasound measurements. With subject lying prone, the location of the sciatic nerve in relation to the popliteal crease and skin to nerve distance were assessed via ultrasound. Analyses were performed with SAS version 9.3 using multiple linear regression. Results: Thirty three subjects were enrolled. Distance from the popliteal crease to the sciatic nerve was 4.5-7.5 (mean 5.7 cm), and the depth of the sciatic nerve from the skin was 1.8-3.2 (mean 2.4 cm). Multiple linear regression for the usefulness of the model has a p value of 0.036, shows between weight and depth. Conclusion: We show that variability exists for sciatic nerve bifurcation location in Korean female, The success rate is creased if consider the relations between weight and depth when performs sciatic nerve block in Korean female. In our study, a sciatic nerve block is recommend that performed 7.5 cm proximal to the crease in the popliteal fossa.

  • PDF