• Title/Summary/Keyword: High frequency PECVD

Search Result 42, Processing Time 0.025 seconds

The Silicon Nitride Films according to The Frequency Conditions of Plasma Enhanced Chemical Vapor Deposition (PECVD의 주파수 조건에 따른 $SiN_x$막 증착)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Jung, Jong-Dae;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.21-25
    • /
    • 2014
  • The silicon nitride ($SiN_x$) film for surface passivation and anti-reflection coating of crystalline silicon solar cell is very important and it is generally deposited by plasma enhanced chemical vapor deposition (PECVD). PECVD can be divided into low and high frequency method. In this paper, the $SiN_x$ film deposited by low and high frequency PECVD method was studied. First, to optimize the $SiN_x$ film deposited by low frequency PECVD method, the refractive index was measured by varying the process conditions like $SiH_4$, $NH_3$, $N_2$ gas rate, and RF power. When $SiH_4$ gas rate was increased and $NH_3$ gas rate was decreased, the refractive index was increased. The refractive index was also increased with RF power decline. Second, to compare the characteristics of the low and high frequency PECVD $SiN_x$ film, the refractive index was measured by varying $NH_3/SiH_4$ gas ratio and RF power and the minority carrier lifetime of before and after high temperature treatment process was also measured. The refractive index of both low and high frequency PECVD $SiN_x$ film was decreased with increase in $NH_3/SiH_4$ gas ratio and RF power. After high temperature treatment process, the minority carrier lifetime of both low and high frequency PECVD $SiN_x$ film was increased and increased degree was similar. The minority carrier lifetime of low frequency PECVD $SiN_x$ was increased from $11.03{\mu}m$ to $28.24{\mu}m$ and that of high frequency PECVD $SiN_x$ was increased from $11.60{\mu}m$ to $27.10{\mu}m$.

PECVD 무선주파수 변화에 따른 전면 패시베이션 특성비교

  • Lee, Gyeong-Dong;Bae, Su-Hyeon;Kim, Seong-Tak;Park, Seong-Eun;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.489.1-489.1
    • /
    • 2014
  • Plasma Enhanced Chemical Vapor Deposition (PECVD) 장치를 통하여 증착된 수소화된 질화막(SiNx:H)은 결정질 태양전지의 반사방지막과 패시베이션 층으로 널리 사용되고 있다. 본 연구에서는 PECVD 장치내에 플라즈마를 형성하는 무선주파수(Radio Frequency)를 다양하게 변화시켜 수소화된 실리콘 질화막의 경향성을 알아보고 각 무선주파수에서 최적화된 패시베이션층을 태양전지에 적용하여 그 특성들을 분석하였다. 다양한 무선주파수 범위는 고주파(High Frequency: 13.56 MHz), 저주파 (Low Frequency: 440 kHZ) 그리고 혼합주파(Dual Frequency: 13.56 MHz + 440 kHz)를 각각 이용하여 수소화된 질화막을 증착 하였으며 $156{\times}156mm$ 대면적 결정질 실리콘 태양전지를 제작하여 비교하였다.

  • PDF

A Study on Silicon Nitride Films by high frequency PECVD for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지를 위한 고주파 PECVD SiNx막 연구)

  • Kim, Jeong-Hwan;Roh, Si-Cheol;Choi, Jeong-Ho;Jung, Jong-Dae;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.7-11
    • /
    • 2012
  • SiNx films have been wildly used as anti-reflection coatings and passivation for crystalline silicon solar cells. In this study, the SiNx films were deposited by using high frequency (13.56MHz) PECVD and optical & passivation properties were investigated. The RF power was changed in a certain range for the film deposition. Then, the refractive index, etch rate, minority carrier lifetime and cell efficiency were measured to study the properties of the film respectively. The optimal deposition conditions for application to crystalline silicon solar cells were proposed as results of the study. Finally, the best cell efficiency of 16.98% was obtained from the solar cell with the SiNx films deposited by RF power of 550W.

Fabrication of High Break-down Voltage MIM Capacitors for IPD Applications

  • Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.241-241
    • /
    • 2009
  • For the Radio Frequency Integrated Passive Device (RFIPD) application, we have successfully developed and characterized high break-down voltage metal-insulator-metal (MIM) capacitors with 2,000 ${\AA}$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$ chamber temperature. At the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the AFM RMS value of about 2,000 ${\AA}$ silicon nitride on the bottom metal was the lowest of 0.862 nm and break-down electric field was the highest of about 8.0 MV/cm with the capacitance density of 326.5 $pF/mm^2$.

  • PDF

High frequency and high power PECVD를 이용한 thin film solar cell용 microcrystalline Si 증착

  • Lee, Seung-Mu;Kim, Yeong-Seok;Han, Mun-Hyeong;Byeon, Dong-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.2-52.2
    • /
    • 2009
  • Si 박막형 solar cell은 Si 결정형 solar cell대비 cost 및 대면적화 측면에서 장점을 가지고 있다. 그러나 amorphous Si의 경우 light soacking에 의한 열화 문제가 있고, microcrystalline Si의 경우 요구되는 효율 확보를 위하여 $1.5{\mu}m$ 이상 두께가 필요하며, 증착율이 $5{\AA}/sec$.이하인 단점이 있다. 본 연구에서는 high deposition rate로 microcrystalline Si를 증착하기 위하여 high frequency, high power PECVD를 이용하였으며, RF power, 증착온도, H2/SiH4 ratio의 3인자를 3수준으로 변화시킨 완전요인배치 실험을 실시하였다. 실험결과 증착율은 $8.0{\AA}/sec.{\sim}52.8{\AA}/sec$ 범위, crystalline fraction은 0%~83.3% 범위의 결과를 얻었으며, 결정이 형성된 조건에서는 XRD분석결과 $2\theta=28.5$ 및 47.5에서 Si (111), (220) peak을 확인할 수 있었다. Surface Profilometer 를 이용한 surface roughness의 경우 $6.3{\AA}\sim32.4{\AA}$ 범위의 결과를 얻었으며, crystalline Portion이 높을수록 surface roughness가 증가함을 알 수 있었다.

  • PDF

EFFECTS OF SHOWERHEAD DIAMETERS ON THE FLOWFIELDS IN A RF-PECVD REACTOR (CVD 반응기 내에서의 유동장에 대한 샤워헤드 지름의 영향에 대한 수치적 연구)

  • Kim, You-Jae;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1475-1480
    • /
    • 2004
  • Plasma Enhanced Chemical Vapor Deposition (PECVD) process uses unique property of plasma to modify surfaces and to achieve the high deposition rates. In this study, a vertical thermal RF-PECVD (Radio Frequency-PECVD) reactor is modeled to investigate thermal flow and the deposition rates with various shapes of the showerhead. The showerhead in the CVD reactor has the shape of a ring and gases are injected in parallel with the susceptor, which is a rotating disk. In order to achieve the high deposition rates, we have simulated the thermal flow fields in the reactor with several showerhead models. Especially the effects of the number of injection holes and the rotating speed of the susceptor are studied. Using a commercial code, CFDACE, which uses FVM (Finite Volume Method) and SIMPLE algorithm, governing equations have been solved for the pressure, mass-flow rates and temperature distributions in the CVD reactor. With the help of the Nusselt number and Sherwood number, the heat and mass transfers on the susceptor are investigated. In order to characteristics of measure the flatness of the layer, furthermore, the relative growth rate (RGR) is considered.

  • PDF

1 (High Power, High Frequency PECVD 로 증착한 SiNx:H 반사방지막의 화학적 조성 및 광학적 특성 평가)

  • Lee, Min-Jeong;Park, Ji-Hyeon;Lee, Dong-Won;Choe, Dae-Gyu;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • 산업화 이후, 석탄 석유를 중심으로 한 화석연료가 이산화탄소를 대량으로 배출하며 지구 온난화를 야기함에 따라, 기존의 화석연료를 대체할 청정하고 무한 재생 가능한 대체에너지로 가장 큰 기대를 받고 있는 것은 태양에너지이며, 이에 보조를 맞춰 태양광발전에 대한 연구개발이 국내외적으로 활발히 진행되고 있는 실정이다. 태양 전지는 빛 에너지를 직접 전기 에너지로 바꿔주는 소자로, 셀의 효율을 높이기 위해서는 최대한 많은 빛을 흡수시킬 수 있는 것이 중요하다. 빛의 반사를 줄이는 방법에는 texturing과 antireflecting coating이 있다. Antireflecting coating은 반도체와 공기의 중간 굴절율을 갖는 박막을 증착하여 측면 반사를 감소시킴으로서 빛의 손실을 감소시키는 역할을 한다. 과거에 반사방지막으로 가장 많이 사용되었던 물질은 SiO로써 굴절률은 1.8~1.9로서 최소의 반사율은 1% 미만이지만, 가시광선영역에서의 흡수에 의한 손실이 생기므로, SiNx가 대체 물질로 제안되었다. SiNx의 경우 굴절률이 약 1.5로서 Si에 쉽게 형성시킬 수 있고, texturing된 Si 표면에 적합하며 반사율을 10%에서 2%로 줄일 수 있는 장점을 가지고 있다. 따라서 본 연구에서는 high power, high frequency PECVD 방법으로 $SiH_4$$NH_3$ gas의 비율, $N_2$ carrier gas 등 공정 변수를 변화시켜 증착한 SiNx 박막의 결정학적 특성을 X-ray diffraction 분석과 XPS (X-ray photoelectron spectroscopy)를 통해 화학적 결합을 확인하였고, 이를 FT-IR (Fourier Transform-Infrared spectroscopy)를 통해 관찰한 결과와 연관시켜 분석하였다. 굴절율의 경우 ellipsometer를 이용하여 측정하였으며 위의 측정을 통하여 SiNx박막의 반사 방지막으로써의 가능성을 확인 하였다.

  • PDF

High quality fast growth nano-crystalline Si film synthesized by UHF assisted HF-PECVD

  • Kim, Youn-J.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.306-306
    • /
    • 2010
  • A high density (> $10^{11}\;cm^{-3}$) and low electron temperature (< 2 eV) plasma is produced by using a conventional HF (13.56 MHz) plasma enhanced chemical vapor deposition (PECVD) with an additional ultra high frequency (UHF, 314 MHz) plasma source utilizing two parallel antenna assembly. It is applied for the high rate synthesis of high quality nanocrystalline silicon (nc-Si) films. A high deposition rate of 1.8 nm/s is achieved with a high crystallinity (< 70%), a low spin density (< $3{\times}10^{16}\;cm^{-3}$) and a high light soaking stability (< 1.5). Optical emission spectroscopy measurements reveal emission intensity of $Si^*$ and $SiH^*$, intensity ratio of $H{\alpha}/Si^*$ and $H{\alpha}/SiH^*$ which are closely related to film deposition rate and film crystallinity, respectively. A high flux of precursor and atomic hydrogen which are produced by an additional high excitation frequency is effective for the fast deposition of highly crystallized nc-Si films without additional defects.

  • PDF

Characteristics of InSb MIS device prepared by remote PECVD SiO$_{2}$ (Remote PECVD SiO$_{2}$ 를 이용한 InSb MIS 소자의 특성)

  • 이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.59-64
    • /
    • 1996
  • InSb MIS devices prepared by remote PECVD SiO$_{2}$ were fabricated. The SiO$_{2}$ films on InSb were deposited at atemperature range of 67~190$^{\circ}$C. The effects of deposition temperature on the structural characteristics of the SiO$_{2}$ films evaluated Auger electron spectroscopy showed that atomic raito of silicon to oxygen was 0.5 and composition toms were distributed uniformaly throuout the oxide film. The transition region is about 100$\AA$ for SiO$_{2}$/InSb interface. The leakage current density at 1MV/cm and the breakdownelectric field of the MiS device using SiO$_{2}$ film deposited at 105$^{\circ}$C were about 22 nA/cm$^{2}$ and 3.5MV/cm, respectively. The interface-state density at mid-bandgap extracted from 1 MHz high frequency C-V measurement was about 2X10$^{11}$ cm$^{-2}$eV$^{-1}$.

  • PDF

Optimization of remote plasma enhanced chemical vapor deposition oxide deposition process using orthogonal array table and properties (직교배열표를 쓴 remote-PECVD 산화막형성의 공정최적화 및 특성)

  • 김광호;김제덕;유병곤;구진근;김진근
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Optimum condition of remote plasma enhanced chemical vapor deposition using orthogonal array method was chosen. Characteristics of oxide films deposited by RPECVD with SiH$_{4}$ and N$_{2}$O gases were investigated. Etching rate of the optimized SiO$_{2}$ films in P-etchant was about 6[A/s] that was almost the same as that the high temperature thermal oxide. The films showed high dielectric breakdown field of more than 7[MV/cm] and a resistivity of 8*10$^{13}$ [.ohmcm] around at 7[MV/cm]. The interface trap density of SiO$_{2}$/Si interface around the midgap derived from the high frequency C-V curve was about 5*10$^{10}$ [/cm$^{2}$eV]. It was observed that the dielectric constant of the optimized SiO$_{2}$ film was 4.29.

  • PDF