• 제목/요약/키워드: High flux

Search Result 2,735, Processing Time 0.333 seconds

Optimization of Ultrafiltration Process using $MIEX^{(R)}$+Coagulation Process ($MIEX^{(R)}$+응집공정을 이용한 한외여과 공정의 최적화 : 다양한 전처리 공정의 적용에 따른 막 오염 현상 규명)

  • Son, Hee-Jong;Hwang, Young-Do;Roh, Jae-Soon;Jung, Chul-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.753-761
    • /
    • 2005
  • In this study, pretreatment of organic matters with $MIEX^{(R)}$ was evaluated using bench-scale experimental procedures on four organic matters to determine its effect on subsequent UF membrane filtration. For comparison, coagulation process was also used as a pretreatment of UF membrane filtration. Moreover, the membrane fouling potential was identified using different fractions and molecular weights of organic matters. From the removal property of MW organic matters by coagulation process for the sample water NOM and AOM, the removal efficiency of high MW organic matters were much higher than those of low MW organic matters. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}$+UF process showed high removal efficiency of organic matter as compared with coagulation-UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. From sequential filtration test results in order to examine the effect of MW of organic matter on membrane fouling, it was found that the membrane foulant was occurred by high MW organic matter, and the DOC of organic matter less than 0.5 mg/L was working as the membrane foulant. In the case of sample water composed of low MW organic matter less than 10 kDa, since the low MW organic matter less than 10 kDa has high removal efficiency by $MIEX^{(R)}$, low reduction rate of permeate flux is obtained as compared with coagulation-UF processes. In summary, it is required to conduct the research on physical/chemical characteristic of original water before pretreatment process of membrane process is selected, and a pertinent pre-treatment process should be employed based on the physical/chemical characteristic of original water.

The Analysis of Operation Characteristics of Flux-Lock Type High-Tc Superconducting Fault Currents Limiter (자속 구속형 고온초전도 전류제한기의 동작특성 분석)

  • Park Chung-Ryul;Lim Sung-hun;Park Hyoung-Min;Lee Jong-Hwa;Ko Seokcheol;Choi Hyo-Sang;Han Byoung-Sung;Hyun Ok-Bae;Chung Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1130-1132
    • /
    • 2004
  • In this paper, we investigated the operational characteristics of the fault current limiting in the The flux-lock type high-Tc superconducting fault current limiter. The flux-lock type high-Tc superconducting fault current limiter was consisted of primary and secondary copper coils that flux was locked on iron core and YBCO thin film. The operational characteristic of a flux-lock type SFCL dependent on winding direction of coil 1 and coil 2, and the number of turns of coil 1 and coil 2, inductances of the coils, saturation in iron core, the properties of superconducting element etc. In this cases, we investigated the fault currents limiting characteristics of the flux-lock type SFCL when winding direction of coil 1 and coil 2 was subtractive polarity winding.

  • PDF

Improvement of Convection by Pulsatile Blood Pump in High Flux Hemodialysis System (고 유량 혈액 투석 시스템에서 박동류 펌프에 대한 대류 향상에 관한 연구)

  • Choi, D.S.;Um, K.M.;Lee, J.C.;Lee, S.R.;Mun, C.H.;Choi, H.;Min, B.G.;Kim, H.C.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.376-383
    • /
    • 2008
  • High-flux dialysis treatment removes various toxins via diffusion as well as convection, which is induced by ultrafiltration and backfiltration. In this study, in vitro (Using the distilled water and the bovine's blood) comparison test was performed to determine whether utilization of a high flux dialyzer paired with different pumps would increase the efficiency of convection. At the same blood flow rates, a pulsatile pump and a roller pump were employed to propel the distilled water and bovine whole blood to a high flux dialyzer. Pressures at the dialyzer inlet and outlet in the blood circuit and in the dialysate circuit were measured, respectively. From these data, we calculated the transmembrane pressure and predicted the ultrafiltration and backfiltration rates developed by both pumps. Using the bovine's blood experiment, ultrafiltration and backfiltration rates were 1.6 times higher with the pulsatile pump than with the roller pump. We conclude that utilization of a pulsatile pump in high flux hemodialysis treatments increases ultrafiltration volume, compared with a roller pump under conditions of the same blood flow rate.

Construction and Characteristics Analysis on the Field System of the High Speed Motor by using Permanent Magnet Halbach Array (영구자석 Halbach 배열을 이용한 초고속 모터용 계자시스템의 구성과 특성 해석)

  • Jang, Seok-Myeong;Seo, Jin-Ho;Jeong, Sang-Seop;Choe, Sang-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.152-160
    • /
    • 1999
  • A high speed motor has been generating a lot of attention due to its performance-more light, thin, short, compact than ordinary motors. But they have low efficiency with high frequency power source because of the iron losses which may produce too much heat as well as the copper losses occurred in the rotor windings. The Halbach array can generate the strong magnetic field systems without additional magnetic materials, therefore the iron losses can be removed. In this paper, the Halbach array is applied to the field system for the high speed motor, and three dimensional FEM is used to analyze the field of the Halbach array considering with the leakage flux. The measured values of flux density are also compared with the FEM analysis. And the magnetic characteristics of the Halbach array field system are compared with those of the conventional field systems such as slot-iron type, PM-iron type. Consequently, it is confirmed that the Halbach array field system is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF

Rotor Loss Analysis of Permanent Magnet High-Speed Machine According to Magnetization Pattern

  • Cho, Han-Wook;Jang, Seok-Myeong;Lee, Sung-Ho;Yang, Hyun-Sup;Jeong, Yeon-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.103-107
    • /
    • 2004
  • Recently, greater attention has been paid to the high-speed generator for its many merits, such as ease of installation, high efficiency and high power density. However, due to their high fundamental frequency, careful consideration needs to be given to both electromagnetic and mechanical design issues. This paper deals with the comparison of two types of permanent magnet high-speed machines. Specifically, the effect of the permanent magnet magnetization pattern on the rotor losses is investigated. On the basis of analytical field analysis and the 2-D finite element method, this paper predicts the flux harmonics and rotor losses under the no-load condition. It is shown that the Halbach magnetization is superior to parallel magnetization in terms of producing rotor losses.

An Experimental Study on Calibration Method of Heat Flux Sensor by using Helium Gas (헬륨을 이용한 열유속센서 검정방법의 실험적 연구)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1219-1224
    • /
    • 2004
  • The objective of this study is to propose an experimental calibration facility in which a heat flux sensor can be calibrated under conductive condition by using helium gas. The heat flux calibration facility was designed, simulated and manufactured for use in a high heat transfer condition. It delivers heat fluxes up to a maximum of 35 KW $m^{-2}$. A copper block heated electrically with 3.5 KW power is designed to produce uniform temperature up to 600 K across its face. High heat fluxes are provided between hot plate and cold plate by 1 mm height helium filled gap. A cold plate is maintained around 300 K through pool boiling using a refrigerant and water-cooled heat exchanger. A simulation was conducted to verify the design of the main test section. To verify the performance of calibration facility, a heat flux sensor was examined. The measured heat fluxes were compared to the calculated one.

  • PDF

Optimization of Magnetic Flux-path Design for Reduction of Shaft Voltage in IPM-Type BLDC Motor

  • Kim, Kyung-Tae;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2187-2193
    • /
    • 2014
  • In this paper, we propose a method for suppressing shaft voltage by modifying the rotor shape and the permanent magnets in interior permanent magnet type high voltage motors. The shaft voltage, which adversely affects the bearing by occurring bearing current, is induced by parasitic components and the leakage flux in motor-driven systems as well as inherent linkage flux between main magnetic flux and shaft according to rotor configuration. Thus, shaft voltage should be analyzed and considered under inverter-driven and non-inverter-driven conditions because inherent linkage flux can analyze under non-inverter-driven condition. In this study, we designed re-arrangement magnet and re-structuring rotor to minimize the shaft voltage. In addition, we optimized the proposed models. The shaft voltage suppression effect of the designed model was validated experimentally and by comparative finite element analysis.

Enhancement of the Critical Heat Flux by Using Heat Spreader

  • Yoon, Young-Sik;Hyup Yang;Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1063-1072
    • /
    • 2003
  • Direct immersion cooling has been considered as one of the promising methods to cool high power density chips. A fluorocarbon liquid such as FC-72, which is chemically and electrically compatible with microelectronic components, is known to be a proper coolant for direct immersion cooling. However, boiling in this dielectric fluid is characterized by its small value of the critical heat flux. In this experimental study, we tried to enhance the critical heat flux by increasing the nucleate boiling area in the heat spreader (Conductive Immersion Cooling Module). Heat nux of 2 MW/㎡ was successfully removed at the heat source temperature below 78$^{\circ}C$ in FC-72. Some modified boiling curves at high heat flux were obtained from these modules. Also, the concept of conduction path length is very important in enhancing the critical heat flux by increasing the heat spreader surface area where nucleate boiling occurs.

Speed Sensorless Vector Control for High Performance of Induction Motor (유도전동기의 고성능제어를 위한 속도센서리스 벡터제어)

  • Dong Hwa Chung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.37-46
    • /
    • 1993
  • Recently, the elimination of speed sensors has been one of the important requirement in vector control systems, because the speed sensor spoil the ruggedness and simplicity of induction motor. This paper proposes sensorless vector control for high performance of induction motor. The proposed vector control scheme is based on a rotor flux and speed which are calculated from the stator voltage and currents with improved flux estimator. The characteristics of vector control employing stator voltage and current generally deteriorate as the speed gets lower acause the calculated rotor flux depends on the stator resistance and it is difficult to calculate rotor flux at low speed of standstill. This new control system is robust with respect to variations of the stator resistance and it makes possible to calculated rotor flux at low speed of standstill. These feature are verified by the simulation results.

  • PDF

Sensorless Vector Control for Induction Motor with Rotor Flux Observer (회전자 자속 관측기를 사용한 유도전동기의 센서리스 벡터제어)

  • Kim, Jun-Hyung;Ahn, Sung-Chan;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.591-593
    • /
    • 1996
  • In order to implement the direct vector control type sensorless vector control, the rotor flux and the angular speed of the rotor can only be estimated through the measurement of the stationary voltage and current states. To estimate the rotor flux, the use of the rotor flux observer(RFO) has been proposed. It is known that the RFO is relatively insensitive to parameter variations. Using the rotor flux value obtained from the RFO, the rotor flux vector can be estimated. The angular speed of the rotor is estimated by the difference between the synchronous angular speed and the slip angular speed, both of which are derived from the rotor flux vector. However unwanted high order frequency waves become incorporated into the synchronous angular speed during calculations. Thus we propose the use of digital filters that will eliminate these high frequency waves. We have demonstrated through computer simulations that the use of filters results in stable system activity over a wide speed range and good response to load variations.

  • PDF