• Title/Summary/Keyword: High flowing self-compacting concrete

Search Result 21, Processing Time 0.032 seconds

An Experimental Study on the Mix Proportion in Fluidity and Engineering Properties of High Flowing Concrete (고유동콘크리트의 유동특성 및 공학적특성에 미치는 조합요인에 관한 실험적 연구)

  • 신홍철;우영제;강석표;김규용;정하선;이석홍;손영현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.307-312
    • /
    • 1998
  • Recently the study on high flowing concrete which has high workability and Self-compacting is being proceeded actively in the university and corporative laboratory. There are some cases that has been applied to the field. This high flowing concrete has higher fluidity and segregation resistance than Plain of flowing concrete. And it is being focused as a remarkable know-how which can make high-quality concrete and reduction effect of labor force. This properties of high flowing concrete are influenced by the relationship of several factors; binder content, water binder ratio and unit water content. It is the aim of this study to propose reference data at mix design of high flowing concrete, after comparing and analyzing the fluidity and strength properties of high flowing concrete according to water binder content ratio and unit water content.

  • PDF

Flowability and Strength Properties of High Flowing Self-Compacting Concrete with Steel Fiber Reinforced (강섬유가 혼입된 고유동 자기충전 콘크리트의 유동 및 강도 특성)

  • Choi, Yun-Wang;Choi, Wook;Jung, Jea-Gwone;An, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, the concrete, in which the steel fiber(SF) with different volume-surface ratios and lengths was intermixed in High flowing Self-Compacting Concrete(HSCC), was produced to compare with steel fiber reinforced concrete as a part of plan to improve the workability and the quality of steel fiber reinforced concrete. As the result of experiment, the flowing and passing characteristics of HSCC intermixed with SF was highly improved as there was no fiber ball phenomenon due to the effect of high flowability and the viscosity, and in the identical range of compressive strength, it showed the tendency that the splitting and flexural strength was increasing as the length was getting longer regardless of volume-surface ratio when compared with HSCC which was intermixed with SF. It is estimated that in case of application of HSCC intermixed with steel fiber to work sites, it would be possible to improve the workability and the quality which would be better than that of steel fiber reinforced concrete which has been used.

The Study for the Air Bubble Deterioration of Combined High Flowing Self-Compacting Concrete (병용계 고유동 자기충전콘크리트의 기포저감을 위한 연구)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ruy, Deug-Hyun;Jeong, Jae-Gwon;Kang, Hyun-Jin;Lee, Jae-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.449-452
    • /
    • 2008
  • This study is to manufacture HSCC (High flowing Self-Compacting Concrete) be able to construction without vibration & hardening, and it is stable according to the change of the surface number of aggregate and to examine the factor of reduction occurred before after hardening through the indoor experiment. It is essential to use of the thickener to increase the viscosity in the combined HSCC. In this result, it make more bubbles than HSCC of pulverulent body. The result of study has shown, through the surface air bubble by not passed air bubbles within concrete after hardening, It has bad effect in not only appearance of structures but strength & duration. It is the experiment for air bubble of concrete according to the types of aggregate (fine aggregate), mixing time of concrete, exfoliation, material of model form and so that reduce the air bubble of combined HSCC. Experiments have shown, the effect of exfoliation was bigger than the effect of form for the performance of surface finishing of combined HSCC after hardening according to the exfoliation or material of model form and the opaque guris has good condition of finishing.

  • PDF

Steel - concrete bond potentials in self-compacting concrete mixes incorporating dolomite powder

  • Kamal, Mounir M.;Safan, Mohamed A.;Al-Gazzar, Mohamed A.
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.273-288
    • /
    • 2013
  • The main objective of this research was to evaluate the potentials of self-compacting concrete (SCC) mixes to develop bond strength. The investigated mixes incorporated relatively high contents of dolomite powder replacing Portland cement. Either silica fume or fly ash was used along with the dolomite powder in some mixes. Seven mixes were proportioned and cast without vibration in long beams with 10 mm and 16 mm steel dowels fixed vertically along the flowing path. The beams were then broken into discrete test specimens. A push-put configuration was adopted for conducting the bond test. The variation of the ultimate bond strength along the flowing path for the different mixes was evaluated. The steel-concrete bond adequacy was evaluated based on normalized bond strength. The results showed that the bond strength was reduced due to Portland cement replacement with dolomite powder. The addition of either silica fume or fly ash positively hindered further degradation as the dolomite powder content increased. However, all SCC mixes containing up to 30% dolomite powder still yielded bond strengths that were adequate for design purpose. The test results demonstrated inconsistent normalized bond strength in the case of the larger diameter compared to the smaller one.

Strength Propreties of Binary and Ternary Blended of Ultra Flowing Self-Compacting Concrete (2성분계 및 3성분계 초유동 자기충전 콘크리트의 강도 특성)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ha, Sang-Woo;Moon, Dae-Joung;Kang, Hyun-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.489-492
    • /
    • 2006
  • Needs for the new technologies and cutting-edge Ultra Flowing Self-Compacting Concrete are emerging as the concrete structures are becoming bigger and more specialized recently. In North America and Europe, SCC, which has high resistance against flow ability and segregation, is being used as concrete material in applications such as precast and prestressed bridges, where reinforcing bars are overcrowdedly placed. In Korea, SCC has been utilized limitedly in building structures but its utilization should be expanded to engineering structures such as bridges. In this study, for the application in precast and prestressed bridges with overlycrowded reinforcing bars, USCC was mixed with admixtures to give a binary system and a ternary system according to the 1st grade rules by JSCE (Japan Society of Civil Engineers). Compressive strength and splitting tensile strength of the resulting USCCs were tested. Elastic modulus were compared with the values suggested in CEB-FIP code and ACI 318-05.

  • PDF

The Bond Characteristics of Deformed Bars in High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트와 이형철근의 부착특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Kim, Kyung Hwan;An, Tae Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.511-518
    • /
    • 2009
  • This study was intended to compare and evaluate the adhesion of High flowing Self-compacting Concrete (HSCC), Conventional Concrete (CC) and deformed bar based on concrete strength 3 (30, 50 and 70 MPa), among the factors affecting the bond strength between concrete and rebar, after fabricating the specimen by modifying the rebar position at Horizontal reinforcement at bottom position (HB), horizontal reinforcement at top position (HT) and vertical reinforcement type (V). As a result of measuring bond strength of HB/HT rebar to evaluate the factor of the rebar at top position, the bond strength of HB/HT rebar at 50 and 70 MPa was 1.3 or less and at 30 MPa, HSCC and CC appeared to be 1.2 and 2,1, respectively. Thus, when designing the anchorage length according to the concrete structure design standard (2007) at HSCC 30, 50 and 70 MPa, it would be desirable to reduce the correction factor of anchorage length of the horizontal reinforcement at top position, which is suggested for the reinforcement at top position, to less than 1.3 of CC.

Study of The Combined High Flowing Self-Compacting Concrete's Cast in Place (병용계 고유동 자기충전 라이닝콘크리트의 현장 타설에 관한 연구)

  • Choi, Wook;Park, Hyun-Myo;Choi, Yun-Wang;Lee, Kwang-Myong;Kim, Gi-Beom;Yoon, Tae-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.977-980
    • /
    • 2008
  • Recently, the study on the application of SCC(Self-Compacting Concrete) is actively underway, in order to solve the lack of flowability and the poor compacting which is one of the chronic problems of tunnel lining concrete. The aim of this study is that to verify the validity of the application of SCLC(Self-Compacting Lining Concrete) for tunnel lining concrete and to examine the characteristic of flowing and mechanics of SCLC in term of comparing before and after casting SCLC was developed by Packing Factor mix method and casted in field mix-design according to the condition of site and the characteristic of aggregate. Before casting, the tests of the capability of flowability and durability was performed by slump flow, air void and so on. Additionally, the slump flow loss is measured to evaluated the possibility of cast-in-place. Furthermore, considering on the first time SCLC casting applied to the tunnel lining in Korea, it is provided that the careful items and the correct way for construction when applied the SCLC on site.

  • PDF

Shear Behavior and Performance of Deep Beams Made with Self-Compacting Concrete

  • Choi, Y.W.;Lee, H.K.;Chu, S.B.;Cheong, S.H.;Jung, W.Y.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.65-78
    • /
    • 2012
  • An experimental study was carried out to evaluate fresh properties of a moderately high-strength (high-flowing) self-compacting concrete (SCC) and to investigate shear behavior and performance of deep beams made with SCC. Fresh and hardened properties of normal concrete (NC) and SCC were evaluated. The workability and compacting ability were observed based on casting time and number of surface cavities, respectively. Four-point loading tests on four deep beams (two made with SCC and two with NC) were then conducted to investigate their shear behavior and performance. Shear behavior and performance of beams having two different web reinforcements in shear were systematically investigated in terms of crack pattern, failure mode, and load-deflection response. It was found from the tests that the SCC specimen having a normal shear reinforcement condition exhibited a slightly higher load carrying capacity than the corresponding NC specimen, while the SCC specimen having congested shear reinforcement condition showed a similar load carrying capacity to the corresponding NC specimen. In addition, a comparative study between the present experimental results and theoretical results in accordance with ACI 318 (Building Code Requirements for Reinforced Concrete (ACI 318-89) and Commentary-ACI 318R-89, 1999), Hsu-Mau's explicit method (Hsu, Cem Concr Compos 20:419-435, 1998; Mau and Hsu, Struct J Am Concr Inst 86:516-523, 1989) and strut-and-tie model suggested by Uribe and Alcocer (2002) based on ACI 318 Appendix A (2008) was carried out to assess the applicability of the aforementioned methods to predict the shear strength of SCC specimens.

Assessment of flowing ability of self-compacting mortars containing recycled glass powder

  • Alipour, Pedram;Namnevis, Maryam;Tahmouresi, Behzad;Mohseni, Ehsan;Tang, Waiching
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • This paper investigates the effect of recycled glass powder (RGP) on flowing properties of self-compacting mortars (SCMs) containing different ratios of fillers and superplasticizer dosages. Fly ash (FA), nano-silica (NS), micro-silica (MS), metakaolin (MK) and rice husk ash (RHA) are used as fillers and their synergistic effect with RFP is studied. The effects of fillers and high-range water reducer (HRWR) on flowing ability of mortars are primarily determined by slump flow and V-funnel flow time tests. The results showed that for composites with a higher RGP content, the mortar flowing ability increased but tended to decrease when the composites containing 10% MK or 5% RHA. However, the flowing ability of samples incorporating 5% RGP and 10% SF or 25% FA showed an opposite result that their slump flow spread decreased and then increased with increasing RGP content. For specimens with 3% NS, the influence of RGP content on flowing properties was not significant. Except RHA and MS, the fillers studied in this paper could reduce the dosage of HRWR required for achieving the same followability. Also, the mixture parameters were determined and indicated that the flowability of mixtures was also affected by the content of sand and specific surface area of cement materials. It is believed that excess fine particles provided ball-bearing effect, which could facilitate the movement of coarse particles and alleviate the interlocking action among particles. Also, it can be concluded that using fillers in conjunction with RGP as cementitious materials can reduce the material costs of SCM significantly.

An Experimental Study on the Rheological Properties of the Combined Self-Compacting Concrete by Quality Variations (품질변동에 따른 병용계 자기충전 콘크리트의 유동특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2014
  • The purpose of this study is to investigate experimentally the variation factors range having influence on the rheological properties of the combined self-compacting concrete according to materials quality, weighting error and site conditions. Two types cement (blast-furnace slag cement and belite cement), lime stone powder as binder and the optimum mix proportions in the preceded study are selected for this study. Also, variations for sensitivity test are as followings; (1) Concrete temperature 3 cases (2) Surface moisture of sand 5cases (3) Fineness modulus of sand 5cases (4) Specific surface of lime stone powder 3cases (5) Dosage of chemical admixture 5cases. Slump flow ($650{\pm}50mm$), 500 mm reaching time (($7{\pm}3sec$), V-type flowing time ($15{\pm}5sec$) and U-box height (min. 300 mm) are tested for sensitivity. As test results, the variations range for quality control are as followings. (1) Concrete temperature; $10{\sim}20^{\circ}C$(below $30^{\circ}C$) (2) Surface moisture of sand; $base{\pm}0.6%$ (3) Fineness modulus of sand; $2.6{\pm}0.2$ (4) Dosage of chemical admixture; $base{\pm}0.2%$ (5) Specific surface of lime stone powder $6000cm^2/g$. Compared with two types cement including based belite cement (binary type) and based slag cement (ternary type), the combined self-compacting concrete used belite cement type is most stable in the quality control because of high contents for lime stone powder and $C_2S$. It is to propose a control scheme of the combined self-compacting concrete in the actual construction work.