Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.
International Journal of Aeronautical and Space Sciences
/
제18권4호
/
pp.662-674
/
2017
This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle (UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are equal to the high-fidelity analysis results by algorithm definition.
Purpose: Simulation-based learning has become a powerful method to improve the quality of care and help students meet the challenges of increasingly complex clinical practice settings. The purpose of this study was to identify the learning effects using high-fidelity SimMan and multi-mode simulation. Methods: Participants in this study were 38 students who were enrolled in an intensive course for a major in nursing at R college. Collected data were analyzed using Chi-square, t-test, and independent t-test with the SPSS 18.0 for Windows Program. Results: There were no statistically significant differences in learning effects between high-fidelity SimMan and multi-mode simulation group. However, skills in clinical performance in the high-fidelity SimMan group were higher than in the multi-mode group (p=.014), communication in clinical performance in multi-mode simulation group was higher than in the high-fidelity SimMan group (p<.001). Conclusion: Multi-mode simulation with a standardized patient is an effective learning method in many ways compared to a high-fidelity simulator. These results suggest that multi-mode simulation be offered to students in nursing colleges which cannot afford to purchase a high-fidelity simulator, or offered as an alternative.
Purpose: This study was conducted to investigate the effects of an education program using a high-fidelity simulator of labor and delivery on nursing knowledge, critical thinking, and clinical performance among nursing students who had not yet experienced clinical practicum. Methods: The development of a 5-week maternity nursing education programs using high-fidelity simulators included modules containing case-oriented scenarios, knowledge, and skills required for maternity care. A randomized controlled study was conducted to verify the effects of the developed program. Data were collected from October 21 to December 9, 2019. The experimental group (n=36) participated in a 5-week high-fidelity simulation program on care for the woman in labor, whereas the control group (n=36) received standard education as lecture and practice with delivery model. The collected data were analyzed using descriptive statistics (frequency, percentage, mean, and standard deviation), the Chi-square test, Fisher exact test, and t-test. Results: For participants who received education using the high-fidelity simulation program, nursing knowledge (t=2.33, p=.011), critical thinking (t=3.73, p<.001), and clinical performance (t=2.53, p=.006) were significantly higher than in the control group. Conclusion: Even for students with no clinical experience, high-fidelity simulation-based nursing education was effective in improving nursing knowledge, critical thinking, and clinical performance among nursing students. Nurse educators will be able to use this high-fidelity simulator effectively, especially in situations where direct clinical practicum may not be feasible.
Purpose: The aim of this study was to assess the efficacy of web-based simulation and high-fidelity simulation on acute heart disease patient care. Methods: The project used a comparative study design with two simulation-based training modalities. A total of 144 nursing students participated in this study: 76 students in a web-based simulation, and 68 students in a high-fidelity simulation. Participants rated their self-efficacy, problem-solving ability, interest in learning, level of stress, satisfaction with the simulation experience, and level of difficulty of the simulation. Results: The scores for self-efficacy, problem-solving ability, and interest in learning including interest in clinical training in the high-fidelity simulation group was higher than in the web-based simulation group. However, there were no significant differences in interest in learning, including interest in nursing knowledge, and in lab training, level of stress, satisfaction with the simulation experience, and level of difficulty of the simulation. Conclusion: A high-fidelity simulation of acute heart disease patient care might be beneficial to developing many more abilities for nursing students than would a web-based simulation. Also, since the web-based simulation improved interest in nursing knowledge, it could be a viable alternative to high-fidelity simulation. Further study is needed to verify the effects of varied levels of simulation-based care with more rigorous outcomes.
Purpose: This study used an exploratory sequential approach (mixed methods) design to explore essential meaning through comparing and analyzing the experiences of nursing students in virtual simulation practice and high fidelity simulation practice education in parallel. Methods: The study participants were 20 nursing students, and data were collected through focus group meetings from July 17 to August 5, 2020, and via online quantitative data from November 10 to November 15, 2020. The qualitative data were analyzed using Giorgi's phenomenological method, and the quantitative data were analyzed using descriptive statistics, the Mann-Whitney U test, Kruskal-Wallis H test analysis of variance and Spearman's ρ correlation. Results: The comparison between the two simulation training experiences was shown in five contextual structures, as follows: (1) reflection of the clinical field, (2) thinking theorem vs. thinking expansion, (3) individual-centered learning vs. team-centered learning, (4) attitudes toward participating in practical training, (5) metacognition of personal competency as a prospective nurse, and (6) revisiting the method of practice training. There was a positive correlation between satisfaction with the practice and the clinical judgment ability of high fidelity simulation, which was statistically significant (r=.47, p=.036). Conclusion: Comparing the experiences between virtual simulation practice training and high fidelity simulation practice training, which has increased in demand due to the Coronavirus Disease-2019 pandemic, is meaningful as it provides practical data for introspection and reflection on in-campus clinical education.
목적: 이 연구의 목적은 시기능 훈련 대상자들의 충실도에 따른 시기능 훈련 효과를 조사하였다. 방법: 시기능 훈련 대상자는 안질환과 조절이상 및 수직사위가 없는 양안시 이상자 75명(남자 40명, 여자 35명)을 대상으로 추적 관찰하였고, 훈련기간은 7주(49일)간 매주 한번은 원에 방문하여 시기능 훈련에 따른 변화를 측정하였다. 결과: 시기능 훈련 대상자의 원 방문율과 충실도가 높을수록 기능적이상, 감각적이상 및 자각적 증상이 개선되었다. 그리고 성공기준에 포함률도 높게 나타났다. 결론: 효과적인 양안시 이상을 개선하기 위하여서는 충실도를 높이는 방법이 중요하다.
The 8th International Conference on Construction Engineering and Project Management
/
pp.137-145
/
2020
Providing safety training to construction workers is essential to reduce safety accidents at the construction site. With the prosperity of visualization technologies, Immersive Virtual Reality (IVR) has been adopted for construction safety training by providing interactive learning experiences in a virtual environment. Previous research efforts on IVR-based training have found that the level of fidelity of interaction between real and virtual worlds is one of the important factors contributing to the sense of presence that would affect training performance. Various interactive devices that link activities between real and virtual worlds have been applied in IVR-based training, ranging from existing computer input devices (e.g., keyboard, mouse, joystick, etc.) to specially designed devices such as high-end VR simulators. However, the need for high-fidelity interactive devices may hinder the applicability of IVR-based training as they would be more expensive than IVR headsets. In this regard, this study aims to understand the impact of the level of fidelity of interactive devices in the sense of presence in a virtual environment and the training performance during IVR-based forklift safety training. We conducted a comparative study by recruiting sixty participants, splitting them into two groups, and then providing different interactive devices such as a keyboard for a low fidelity group and a steering wheel and pedals for a high-fidelity group. The results showed that there was no significant difference between the two groups in terms of the sense of presence and task performance. These results indicate that the use of low-fidelity interactive devices would be acceptable for IVR-based safety training as safety training focuses on delivering safety knowledge, and thus would be different from skill transferring training that may need more realistic interaction between real and virtual worlds.
근사모델을 이용한 최적설계 문제에서는 설계변수의 수가 증가함에 따라 근사모델의 정확도를 확보하기 위한 계산 횟수가 급격히 증가한다. 이를 해결하기 위해 저정확도 모델을 바탕으로 고정확도 모델로 보정하는 Variable-Fidelity Modeling을 이용하였다. 본 논문에서 Variable-Fidelity Model로는 계층적 크리깅 모델을 이용하였으며, 다목적 유전자 알고리즘과 결합하여 최적화 프레임워크를 제안하였다. 이 방법의 유용성을 검증하기 위하여 천음속 영역에 대한 익형 최적 설계를 하였다. 설계변수로는 PARSEC의 파라메터를 이용하였으며, 서로 다른 격자수를 가지는 경우 그리고 서로 다른 정확도를 가지는 해석자를 이용한 경우에 관하여 해석을 수행하였다. 검증을 위해 단일 정확도 모델에 대한 최적화 결과와 비교하였다. 모든 경우에 관하여 파레토 라인이 유사하게 나오는 것을 확인 할 수 있었으며, 계산시간은 계층적 크리깅 모델을 이용한 Variable-Fidelity Model이 단일 정확도 모델에 비하여 훨씬 줄어들었다. 이를 바탕으로 본 논문의 방법이 단일 정확도를 가지는 모델에 대한 최적화 방법과 유사한 정확도를 가지며 더욱 효율적임을 확인 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.