• Title/Summary/Keyword: High fat diet mice

Search Result 681, Processing Time 0.035 seconds

A Study on the Effect of Herbal-acupuncture with Schizandrae Fructus Solution on Hyperlipidemia in Rats Induced by High Fat Diet (양릉천(陽陵泉) 오미자(五味子)약침이 고지방식이로 유발된 고지혈증 흰쥐에 미치는 영향)

  • Lee, Sung-Hwan;Lee, Hyun
    • Journal of Acupuncture Research
    • /
    • v.28 no.2
    • /
    • pp.143-153
    • /
    • 2011
  • Objectives : The purpose of this study is to observe the effects of herbal acupuncture with Schizandrae Fructus solution at $GB_{34}$(Yangneungcheon) on hyperlipidemia in rats. Methods : In the present study, herbal acupuncture with Schizandrae Fructus solution was administered into hyperlipidemic mice. The author performed several experimental items to analyze the levels of various components and enzymes in serum, liver, as well as the histological changes of liver and aorta. Results : 1. In the Schizandrae Fructus herbal-acupuncture group, serum total cholesterol and Atherogenic index were significantly decreased, and the ratios of HDL to total cholesterol, and phospholipid to total cholesterol in serum were significantly increased as compared with those of the control group. 2. In the Schizandrae Fructus herbal-acupuncture group, HMG-CoA reductase activity was significantly decreased as compared with those of the control group. 3. Schizandrae Fructus herbal-acupuncture reduced deposit of lipid in the liver tissue. Conclusions : From the above results, it is suggested that Schizandrae Fructus herbal-acupuncture at $GB_{34}$ has a therapeutic effect on hyperlipidemia.

Investigation of Novel Pharmacological Action of Arctii Fructus and its Compound

  • Hong, Seung-Heon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.9-9
    • /
    • 2018
  • Arctii Fructus (AF), which contains arctigenin (ARC) as a major constituent, is traditionally used as an anti-inflammatory medicine to treat inflammatory sore throat. Although several studies have proven its anti-inflammatory effects, there have been no reports on its use in inflammation related disorders such as obesity, cancer metastasis, and allergic responses. This study investigated the anti-obesity effect and anti-metastasis effect of AF and ARC. AF and ARC inhibited weight gain by reducing the mass of white adipose tissue in high fat diet (HFD)-induced obese mice. Serum cholesterol levels were also improved by AF and ARC. In in vitro experiments, AF and ARC decreased differentiation of white adipocytes. Furthermore, AF induced differentiation of brown adipocytes, which are able to consume surplus energy through non-shivering thermogenesis. Also, AF and ARC inhibited colon cancer and lung metastasis of colon cancer. They suppressed not only colorectal cancer cell progression by inhibiting cell growth, but also prohibited lung metastasis by regulating epithelial-mesenchymal transition (EMT), migration, and the invasion. These effects were confirmed in an experimental metastasis mouse model. In addition, AF and ARC inhibited mast cell mediated allergic responses. Collectively, our study suggests that AF and ARC might show inhibitory effects on inflammation related diseases, including obesity, cancer, cancer metastasis, and allergic responses.

  • PDF

The Effects of Whole Body Vibration in the Aspect of Reducing Abdominal Adipose Tissue in High-Fat Diet Mice Model (고지방 식이 섭취 소동물 모델을 활용한 전신진동 자극의 복부 지방 감소 효능 평가)

  • Hwang, Donghyun;Kim, Seohyun;Lee, Hana;lee, Sangyeob;Seo, Donghyun;Cho, Seungkwan;Chen, Seulgi;Han, Taeyoung;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • The prevalence of obesity has noticeably increased worldwide over several decades with various complication. Even though anti-obesity drug treatments have been spotlighted by resulting in effective mean weight losses, its adverse effects cannot be overlooked. Thus, this study aimed to evaluate the effects of multi-frequency whole body vibration, one of the mechanical stimulus, as a countermeasure against obesity. Thirty-two-6-week-old C57BL/6J male mice were equally assigned to four groups: the Control group (CON, n = 8), the Sham group (Sham, n = 8), the sham with single frequency whole body vibration (S+V, n = 8), and the sham with multi frequency whole body vibration (S+MV, n = 8). After 4 weeks, morphologic changes in the adipose tissue were evaluated from three-dimensional images using in vivo micro-computed tomography. At 4 weeks, the volume of the abdominal adipose tissue, which had the highest value in Sham group, noticeably reduced in S+MV group compared to it in S+V group. These results implied that the accumulation of abdominal adipose tissue can be effectively reduced through applying multi-frequency whole body vibration.

Epigenetic role of nuclear S6K1 in early adipogenesis

  • Yi, Sang Ah;Han, Jihoon;Han, Jeung-Whan
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.401-402
    • /
    • 2016
  • S6K1 is a key regulator of cell growth, cell size, and metabolism. Although the role of cytosolic S6K1 in cellular processes is well established, the function of S6K1 in the nucleus remains poorly understood. Our recent study has revealed that S6K1 is translocated into the nucleus upon adipogenic stimulus where it directly binds to and phosphorylates H2B at serine 36. Such phosphorylation promotes EZH2 recruitment and subsequent histone H3K27 trimethylation on the promoter of its target genes including Wnt6, Wnt10a, and Wnt10b, leading to repression of their expression. S6K1-mediated suppression of Wnt genes facilitates adipogenic differentiation through the expression of adipogenic transcription factors PPARγ and Cebpa. White adipose tissues from S6K1-deficient mice consistently exhibit marked reduction in H2BS36 phosphorylation (H2BS36p) and H3K27 trimethylation (H3K27me3), leading to enhanced expression of Wnt genes. In addition, expression levels of H2BS36p and H3K27me3 are highly elevated in white adipose tissues from mice fed on high-fat diet or from obese humans. These findings describe a novel role of S6K1 as a transcriptional regulator controlling an epigenetic network initiated by phosphorylation of H2B and trimethylation of H3, thus shutting off Wnt gene expression in early adipogenesis.

Early potential effects of resveratrol supplementation on skeletal muscle adaptation involved in exercise-induced weight loss in obese mice

  • Sun, Jingyu;Zhang, Chen;Kim, MinJeong;Su, Yajuan;Qin, Lili;Dong, Jingmei;Zhou, Yunhe;Ding, Shuzhe
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.200-205
    • /
    • 2018
  • Exercise and resveratrol supplementation exhibit anti-obesity functions in the long term but have not been fully investigated yet in terms of their early potential effectiveness. Mice fed with high-fat diet were categorized into control (Cont), exercise (Ex), resveratrol supplementation (Res), and exercise combined with resveratrol supplementation (Ex + Res) groups. In the four-week period of weight loss, exercise combined with resveratrol supplementation exerted no additional effects on body weight loss but significantly improved whole-body glucose and lipid homeostasis. The combined treatment significantly decreased intrahepatic lipid content but did not affect intramyocellular lipid content. Moreover, the treatment significantly increased the contents of mtDNA and cytochrome c, the expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and its downstream transcription factors, and the activities of ATPase and citrate synthase. However, exercise, resveratrol, and their combination did not promote myofiber specification toward slow-twitch type. The effects of exercise combined with resveratrol supplementation on weight loss could be partly due to enhanced mitochondrial biogenesis and not to fiber-type shift in skeletal muscle tissues.

Review on Amorfrutin of Licorice for Type2 Diabetes Mellitus (감초의 amorfrutin성분과 당뇨 치료 효과에 대한 고찰)

  • Han, Juhee;Heo, Hyemin;Jeong, Minjeong;Kim, Hongjun;Jang, Insoo
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.1078-1088
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of amorfrutin of licorice for Type2 diabetes mellitus. Method: The PubMed, CNKI, Wanfang, OASIS, NDSL, J-STAGE, and CiNii databases were searched from the beginning of the search to September 20, 2020, with no limits on language. Extractions and selections from the literature were made by two authors. The study included in vivo experiments with amorfrutins in high-fat diet-induced obesity C57BL/6 mice and leptin receptor-deficient db/db mice and in silico studies. Results & Conclusion: Four studies were finally selected. We confirmed that amorfrutin treatment considerably improved insulin sensitivity and glucose tolerance and reduced plasma insulin and glucose. Amorfrutins bind to and selectively activate Peroxisome Proliferator-Activated Receptor Gamma (PPARγ), which plays an important role in glucose metabolism. Amorfrutins also strongly bind to the glucagon receptor (GCGR) and work as antagonist. Using the amorfrutins from licorice could therefore be helpful in treating type2 diabetes mellitus.

Ginsenoside compound K ameliorates palmitate-induced atrophy in C2C12 myotubes via promyogenic effects and AMPK/autophagy-mediated suppression of endoplasmic reticulum stress

  • Kim, Tae Jin;Pyun, Do Hyeon;Kim, Myeong Jun;Jeong, Ji Hoon;Abd El-Aty, A.M.;Jung, Tae Woo
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.444-453
    • /
    • 2022
  • Background: Compound K (CK) is among the protopanaxadiol (PPD)-type ginsenoside group, which produces multiple pharmacological effects. Herein, we examined the effects of CK on muscle atrophy under hyperlipidemic conditions along with its pro-myogenic effects. Further, the molecular pathways underlying the effects of CK on skeletal muscle have been justified. Methods: C2C12 myotubes were treated with palmitate and CK. C2C12 myoblasts were differentiated using CK for 4-5 days. For the in vivo experiments, CK was administered to mice fed on a high-fat diet for 8 weeks. The protein expression levels were analyzed using western blotting analysis. Target protein suppression was performed using small interfering (si) RNA transfection. Histological examination was performed using Jenner-Giemsa and H&E staining techniques. Results: CK treatment attenuated ER stress markers, such as eIF2a phosphorylation and CHOP expression and impaired myotube formation in palmitate-treated C2C12 myotubes and skeletal muscle of mice fed on HFD. CK treatment augmented AMPK along with autophagy markers in skeletal muscle cells in vitro and in vivo experiments. AMPK siRNA or 3-MA, an autophagy inhibitor, abrogated the impacts of CK in C2C12 myotubes. CK treatment augmented p38 and Akt phosphorylation, leading to an enhancement of C2C12 myogenesis. However, AMPK siRNA abolished the effects of CK in C2C12 myoblasts. Conclusion: These findings denote that CK prevents lipid-induced skeletal muscle apoptosis via AMPK/autophagy-mediated attenuation of ER stress and induction of myoblast differentiation. Therefore, we may suggest the use of CK as a potential therapeutic approach for treating muscle-wasting conditions associated with obesity.

Therapeutic effects of selective p300 histone acetyl-transferase inhibitor on liver fibrosis

  • Hyunsik Kim;Soo-Yeon Park;Soo Yeon Lee;Jae-Hwan Kwon;Seunghee Byun;Mi Jeong Kim;Sungryul Yu;Jung-Yoon Yoo;Ho-Geun Yoon
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.114-119
    • /
    • 2023
  • Liver fibrosis is caused by chronic liver damage and results in the aberrant accumulation of extracellular matrix during disease progression. Despite the identification of the HAT enzyme p300 as a major factor for liver fibrosis, the development of therapeutic agents targeting the regulation of p300 has not been reported. We validated a novel p300 inhibitor (A6) on the improvement of liver fibrosis using two mouse models, mice on a choline-deficient high-fat diet and thioacetamide-treated mice. We demonstrated that pathological hall-marks of liver fibrosis were significantly diminished by A6 treatment through Masson's trichrome and Sirius red staining on liver tissue and found that A6 treatment reduced the expression of matricellular protein genes. We further showed that A6 treatment improved liver fibrosis by reducing the stability of p300 protein via disruption of p300 binding to AKT. Our findings suggest that targeting p300 through the specific inhibitor A6 has potential as a major therapeutic avenue for treating liver fibrosis.

Effects of the Fermented Black Garlic Extract on Lipid Metabolism and Hepatoprotection in Mice (발효흑마늘 추출물이 흰쥐의 지질대사 및 간기능 개선에 미치는 영향)

  • Chung, Soo Yeon;Han, Kyung-Hoon;Bae, Song-Hwan;Han, Sung Hee;Lee, Yong Kwon
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • This study was conducted to evaluate the functionality of fermented black garlic extracts under various conditions. Black garlic powder was prepared by aging for 0~72 hours at 80℃ depending on relative humidity (RH). It showed the highest antioxidant effects among the samples; the total antioxidant activity of black garlic powders at RH 75%, 84%, and 90% for 72 hours was increased 31.9 times, 28.2 times, and 22.6 times compared with that of the fresh garlic powder, respectively. Also, the alliin content was gradually decreased. S-ally-L-cysteine and S-ethyl-cysteine levels were increased; the highest values were 495.9 ㎍/g and 1,769.7 ㎍/g after aging for 72 hours at RH 75%. Aspartate transaminase (AST) and alanine transaminase (ALT) levels were increased following high fat diet feeding, but the rise was obviously reduced by administration of black garlic extract. The total cholesterol, LDL/VLDL-cholesterol, and triglyceride contents in serum were significantly lower in methionine and choline deficient (MCD) diet treatment groups than in the positive control group. The concentration was increased following the intake of black garlic and fermented black garlic extracts. Therefore, black garlic extracts could be an ideal material as a dietary supplement in healthy functional foods to improve the effects on fatty liver.

Desalinated underground seawater of Jeju Island (Korea) improves lipid metabolism in mice fed diets containing high fat and increases antioxidant potential in t-BHP treated HepG2 cells

  • Noh, Jung-Ran;Gang, Gil-Tae;Kim, Yong-Hoon;Yang, Keum-Jin;Lee, Chul-Ho;Na, O-Su;Kim, Gi-Ju;Oh, Won-Keun;Lee, Young-Don
    • Nutrition Research and Practice
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study was performed to investigate the effect of desalinated underground seawater (named as 'magma seawater', MSW) of Jeju Island in Korea on lipid metabolism and antioxidant activity. MSW was collected from underground of Han-Dong in Jeju Island, and freely given to high fat diet (HFD)-fed C57BL/6 mice for 10 weeks. Although there were no significant differences in the body weight changes and plasma lipid levels, hepatic triglyceride levels were significantly lower in the MSW group than in the normal tap water (TW)-drunken control group. Furthermore, the activity of fatty acid synthase (FAS) was significantly decreased and carnitine palmitoyltransferase (CPT) activity was increased in MSW group compared to TW group. Similarly, real-time PCR analysis revealed that mRNA expressions of lipogenic genes were lowered in MSW groups compared to the control group. In a morphometric observation on the liver tissue, accumulation of fats was remarkably reduced in MSW group. Meanwhile, in vitro assay, tree radical scavenging activity measured by using diphenylpicrylhydrazyl (DPPH) was increased in MSW group. The 2'-7'-dichlorofluorescein diacetate (DCF-DA) staining followed with fluorescent microscopy showed a low intensity of fluorescence in MSW-treated HepG2 cells, compared to TW-treated HepG2 cells, which indicated that the production of reactive oxygen species by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was decreased by MSW treatment. The antioxidant effect of MSW on t-BHP-induced oxidative stress in HepG2 cells was supported by the increased activities of intracellular antioxidant enzymes such as catalase and glutathione reductase. From these results, we speculate that MSW has an inhibitory effect on lipogenesis in liver and might play a protective role against cell damage by t-BHP-induced oxidative stress.