• Title/Summary/Keyword: High explosive

Search Result 499, Processing Time 0.028 seconds

A Case Study of Creative Art Based on AI Generation Technology

  • Qianqian Jiang;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.84-89
    • /
    • 2023
  • In recent years, with the breakthrough of Artificial Intelligence (AI) technology in deep learning algorithms such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAE), AI generation technology has rapidly expanded in various sub-sectors in the art field. 2022 as the explosive year of AI-generated art, especially in the creation of AI-generated art creative design, many excellent works have been born, which has improved the work efficiency of art design. This study analyzed the application design characteristics of AI generation technology in two sub fields of artistic creative design of AI painting and AI animation production , and compares the differences between traditional painting and AI painting in the field of painting. Through the research of this paper, the advantages and problems in the process of AI creative design are summarized. Although AI art designs are affected by technical limitations, there are still flaws in artworks and practical problems such as copyright and income, but it provides a strong technical guarantee in the expansion of subdivisions of artistic innovation and technology integration, and has extremely high research value.

A Study of Factors Influencing the Range of 81mm HE shells One-Shot systems based on CART Regression analysis (CART 회귀분석 기반 일회성 시스템 81mm 고폭탄 사거리에 영향을 미치는 요인 분석)

  • Myung Sung Kim;Jun Hyeok Choi;Young Min Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.107-113
    • /
    • 2023
  • For one-shot systems such as 81mm high-explosive ammunition, research on performance prediction is insignificant due to research manpower infrastructure and lack of interest and difficulties in securing field data, which can only be done by special task workers. In order to evaluate the actual range of ammunition, the storage ammunition reliability evaluation checks the range by firing actual ammunition through a functional test. Test evaluation is a method of extracting a sample from the population, launching it, and recording the results accordingly. As a result of these tests, the range, which is an indicator of ammunition performance, can be measured differently according to meteorological factors such as temperature, atmospheric pressure, and humidity according to the location of the test site. In this study, various environmental factors generated at the test site and storage period analyze the correlation with the range, which is the performance of ammunition, and analyze the priority of importance for each factor and the numerical standards that environmental factors affect range. Through this, a new approach to one-shot system performance prediction was presented.

Optimization of Designing Barrier to Mitigate Hazardous Area in Hydrogen Refueling Stations (수소충전소 폭발위험장소 완화를 위한 확산차단벽 최적화 설계)

  • SEUNGHYO AN;SEHYEON OH;EUNHEE KIM;JUNSEO LEE;BYUNGCHOL MA
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.734-740
    • /
    • 2023
  • Hydrogen emphasis on safety management due to its high potential for accidents from wide explosive limits and low ignition energy. To prevent accidents, appropriate explosion-proof electrical equipment with installed to safe management of ignition sources. However, designing all facilities with explosion-proof structures can significantly increase costs and impose limitations. In this study, we optimize the barrier to effectively control the initial momentum in case of hydrogen release and form the control room as a non-hazardous area. We employed response surface method (RSM), the barrier distance, width and height of the barrier were set as variables. The Box-Behnken design method the selection of 15 cases, and FLACS assessed the presence of hazardous area. Analysis of variance (ANOVA) analysis resulting in an optimized barrier area. Through this methodology, the workplace can optimize the barrier according to the actual workplace conditions and classify reasonable hazardous area, which is believed to secure safety in hydrogen facilities and minimize economic burden.

Multi-Objective Optimization Study of Blast Wall Installation for Mitigation of Damage to Hydrogen Handling Facility (수소 취급시설 피해 저감을 위한 방호벽 설치 다목적 최적화 연구)

  • Se Hyeon Oh;Seung Hyo An;Eun Hee Kim;Byung Chol Ma
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.9-15
    • /
    • 2023
  • Hydrogen is gaining attention as a sustainable and renewable energy source, potentially replacing fossil fuels. Its high diffusivity, wide flammable range, and low ignition energy make it prone to ignition even with minimal friction, potentially leading to fire and explosion risks. Workplaces manage ignition risks by classifying areas with explosive atmospheres. However, the effective installation of a blast wall can significantly limit the spread of hydrogen, thereby enhancing workplace safety. To optimize the wall installation of this barrier, we employed the response surface methodology (RSM), considering variables such as wall distance, height, and width. We performed 17 simulations using the Box-Behnken design, conducted using FLACS software. This process yielded two objective functions: explosion likelihood near the barrier and explosion overpressure affecting the blast wall. We successfully achieved the optimal solution using multi-objective optimization for these two functions. We validated the optimal solution through verification simulations to ensure reliability, maintaining a margin of error of 5%. We anticipated that this method would efficiently determine the most effective installation of a blast wall while enhancing workplace safety.

Characteristics of Shaped Charge Jets by the Shape of the Inhibitor Inserted into the Liner (성형작약탄 라이너 용입체 형상에 따른 제트특성 분석)

  • Joonhong Choi;Manhoi Koo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.588-595
    • /
    • 2024
  • The performance of a shaped charge bomb depends on the explosive performance, liner precision machining and manufacturing quality. The key performance is how uniformly the liner transforms into a jet. In order to reduce the performance of the shaped charge bomb from a protection point of view, this study investigated the characteristics of the jet formation and progression by inserting inhibitors of different shapes into the liner using flash X-ray experimental analysis techniques. The larger the volume filled inside the liner, the lower the rate of high-speed jet generation, which was well confirmed by experiments. Due to the effect of the inhibitor, it takes a considerable amount of time delay to form a jet after explosion compared to a normal shot, and quantity and mass of jet particles that can contribute to penetration are decreased, and the penetration power is also greatly reduced due to the scattering of segmented jets.

Preliminary System Design of STEP Cube Lab. for Verification of Fundamental Space Technology (우주기반기술 검증용 극초소형 위성 STEP Cube Lab.의 시스템 개념설계)

  • Kwon, Sung-Cheol;Jung, Hyun-Mo;Ha, Heon-Woo;Han, Sung-Hyun;Lee, Myung-Jae;Jeon, Su-Hyeon;Park, Tae-Young;Kang, Su-Jin;Chae, Bong-Gun;Jang, Su-Eun;Oh, Hyun-Ung;Han, Sang-Hyuk;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.430-436
    • /
    • 2014
  • The mission objective of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) classified as a pico-class satellite is to verify the technical effectiveness of payloads such as variable emittance radiator, SMA washer, oscillating heat pipe and MEMS based solid propellant thruster researched at domestic universities. In addition, the MEMS concentrating photovoltaic power system and the non-explosive holding and separation mechanism with the advantages of high constraint force and low shock level will be developed as the primary payloads for on-orbit verification. In this study, the feasibility of the mission actualization has been confirmed by the preliminary system design.

A study of flour dust explosion (사료분진의 폭발특성에 관한 연구)

  • Lee, Hong-Ju;Woo, In-Sung;Hong, Hyun-Kyoung;Sa, Min-Hyung;Kim, Yun-Seon;Hwhag, Myung-Whan;Hwang, Seong-Min;Park, Hee-Chul;Lee, Ju-Yup
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.109-116
    • /
    • 2011
  • This study examined into property of flour dust explosion to get the basic data for safety of industry by protecting accident of dust explosion. The experiment was conducted to know the effect of distance between explodes in the experiment device, effect of flour dust concentration, effect of humidity, effect of explosion pressure to the dust concentration and effect of inactive substance additive. The study indicated that explosion was happened effectively at the optimum distance 100mm or less in inter-polar distance, and minimum ignition energy was measured at 6mm. The data of feed concentration to the probability of explosion showed that the smaller the particle diameter was, the larger probability of explosion was, and the higher the dust concentration was, the more increased the pressure of explosion was, but more than upper limit of dust concentration, then the explosion of pressure decreased. For the effect of humidity, the more it contained water, the more decreased the ignition energy of dust was, so increased minimum explosive concentration, and effective water content was minimum 10% or more. Inactive substance additive was effective in adding more than 15% CaCO3 and CaO as substance inhibiting dust explosion, in which CaCO3 was more effective than CaO. the analysis of the flame of dust explosion was performed by high-speed video camera, it showed the size of flame bacame smaller in order that sub feed, main feed, wheat powder. As a result, sub feed was expected to be less dangerous than others.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.

Development of Light-weight Fire Protection Materials Using Fly Ash and Light-weight Aggregate (플라이애시 및 경량골재를 활용한 경량 내화성 마감재료 개발)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • The serious issue of tall building is to ensure the fire resistance of high strength concrete. Therefore, Solving methods are required to control the explosive spalling. The fire resistant finishing method is installed by applying a fire resistant material as a light-weight material to structural steel and concrete surface. This method can reduce the temperature increase of the reinforcement embedded in structural steel and concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of light-weight fire protection material compounds including the inorganic admixture such as fly ash, meta-kaolin and light-weight aggregate as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. Also, this paper is concerned with change in microstructure and dehydration of the light-weight fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM and XRD. The study results show that the light-weight fire resistant finishing material composed of fly ash, meta-kaolin and light-weight aggregate has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Developed light-weight fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF