• 제목/요약/키워드: High energy ball-milling

검색결과 197건 처리시간 0.03초

Study on the heat transfer properties of raw and ground graphene coating on the copper plate

  • Lee, Sin-Il;Tanshen, Md.R.;Lee, Kwang-Sung;Munkhshur, Myekhlai;Jeong, Hyo-Min;Chung, Han-Shik
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.78-85
    • /
    • 2013
  • A high thermal conductivity material, namely graphene is treated by planetary ball milling machine to transport the heat by increasing the temperature. Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of copper substrate with graphene. It is well known that the graphene is unable to disperse into base fluid without any treatment, which is due to the several reasons such as attachment of hydrophobic surface, agglomeration and impurity. To further improve the dispersibility and thermal characteristics, planetary ball milling approach is used to grind the raw samples at optimized condition. The results are examined by transmission electron microscopy, x-ray diffraction, Raman spectrometer, UV-spectrometer, thermal conductivity and thermal imager. Thermal conductivity measurements of structures are taken to support the explanation of heat transfer properties of different samples. As a result, it is found that the planetary ball milling approach is effective for improvement of both the dispersion and heat carriers of carbon based material. Indeed, the heat transfer of the ground graphene coated substrate was higher than that of the copper substrate with raw graphene.

입자 저감 및 pH가 ATO (안티몬도핑 산화주석)의 분산 특성에 미치는 영향 (The Effects of Size Reduction and pH on Dispersion Characteristics of ATO (Antimony-Doped Tin Oxide))

  • 김진훈;정의경;이상헌;한원희;이영석
    • 공업화학
    • /
    • 제21권3호
    • /
    • pp.311-316
    • /
    • 2010
  • 본 연구는 높은 분산 안정성을 유지하는 antimony-doped tin oxide (ATO) 분산액을 제조하기 위하여, 습식 볼밀법으로 분쇄시간에 따른 ATO의 입자크기, 입도분포, 분산성의 변화를 고찰하였다. 또한 각각의 습식 볼밀 처리된 ATO 분산액의 pH를 변화시켜 ATO 분산액의 분산 특성을 고찰하였다. 습식 볼밀 분쇄 조건에 의하여 ATO의 입자크기 및 입도 분포 변화는 레이저회절 입도분석기와 주사전자현미경을 이용하여 평가하였고, 습식 볼밀 분쇄 시간 및 pH조건에 따른 ATO 입자의 분산성은 제타전위 측정법과 다중광산란(multiple light scattering)법을 이용하여 평가하였다. 분쇄 조건 중 60 min 동안 처리된 ATO 입자 크기는 30% 이하로 작아지고, $1{\sim}35{\mu}m$에서 $0.1{\sim}5{\mu}m$로 입도분포를 갖는 균일한 입자를 얻을 수 있었다. 그러나 분쇄조건을 60 min 이상 처리한 것은 역분쇄 및 재응집 현상의 발생으로 인하여 한계 분쇄 시간이 나타나는 것을 알 수 있었다. 이러한 결과로부터 ATO 분산액은 습식 볼밀 분쇄 시간을 증가시킬수록 입자 크기가 감소하고 표면 에너지가 증가하여 입자간의 반발력이 커지게 됨을 알 수 있었고, 또한 용액의 pH를 증가시킬수록 입자의 표면 이온화도가 커짐으로 인하여 ATO 분산액의 분산성이 향상되는 것을 알 수 있었다.

방전플라즈마 소결법을 이용한 ZnS-SiO2 복합재료의 제조와 기계적 특성 (Fabrication of ZnS-SiO2 Composite and its Mechanical Properties)

  • 신대훈;김길수;이영중;조훈;김영도
    • 한국분말재료학회지
    • /
    • 제15권1호
    • /
    • pp.1-5
    • /
    • 2008
  • ZnS-$SiO_2$ composite is normally used for sputtering target. In recent years, high sputtering power for higher deposition rate often causes crack formation of the target. Therefore the target material is required that the sintered target material should have high crack resistance, excellent strength and a homogeneous microstructure with high sintered density. In this study, raw ZnS and ZnS-$SiO_2$ powders prepared by a 3-D mixer or high energy ball-milling were successfully densified by spark plasma sintering, the effective densification method of hard-to-sinter materials in a short time. After sintering, the fracture toughness was measured by the indentation fracture (IF) method. Due to the effect of crack deflection by the residual stress occurred by the second phase of fine $SiO_2$, the hardness and fracture toughness reached to 3.031 GPa and $1.014MPa{\cdot}m^{1/2}$, respectively.

고에너지 볼밀로 만든 $LaAlO_3$ 분말의 합성과 소결 특성 (Synthesized and sinteristics of $LaAlO_3$ ceramics from high energy ball milling powders)

  • 최상수;서병준;정수태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.648-651
    • /
    • 2003
  • Fine $LaAlO_3$ powders were successfully synthesized from $La_2O_3$ and ${\gamma}-Al_2O_3$ powders milling for $10{\sim}50hrs$ via the high energy milling technique (mechanochemical methode) in room temperature and air. The particle size of $LaAlO_3$ powder were estimated from XRD patterns and SEM images to be $160{\sim}180nm$. The $LaAlO_3$ ceramics are derived for the synthesized powders (milling for 10, 30 and 50hrs) by sintering at $1400^{\circ}C$. The micrographs of grains showed a agglomeration and the degree of agglomeration increased with the milling time. The $LaAlO_3$ made from synthesized powders milling for 30hrs can be sintered to 98% of theoretical density at $1,400^{\circ}C$ for 4hrs.

  • PDF

CU Oxide 분산 및 환원에 의한 Al2O3/Cu 나노복합재료의 제조공정 (Fabrication Process of Al2O3/Cu Nanocomposite by Dispersion and Reduction of Cu Oxide)

  • 고세진;민경호;강계명;김영도;문인형
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.656-660
    • /
    • 2002
  • It was investigated that $Al_2$$O_3$/Cu nanocomposite powder could be optimally prepared by dispersion and reduction of Cu oxide, and suitably consolidated by employing pulse electric current sintering (PECS) process. $\alpha$-$Al_2$$O_3$ and CuO powders were used as elemental powders. In order to obtain $Al_2$O$_3$ embedded by finely and homogeneously dispersed CuO particles, the elemental powders were high energy ball milled at the rotating speed of 900 rpm, with the milling time varying up to 10 h. The milled powders were heat treated at $350^{\circ}C$ in H$_2$ atmosphere for 30 min to reduce CuO into Cu. The reduced powders were subsequently sintered by employing PECS process. The composites sintered at $1250^{\circ}C$ for 5 min showed the relative density of above 98%. The fracture toughness of the $Al_2$$O_3$/Cu nanocomposite was as high as 4.9MPa.$m^{1}$2//, being 1.3 times the value of pure $Al_2$$O_3$ sintered under the same condition.

Mo 나노분말의 소결거동 및 기계적 특성 (Sintering Behavior and Mechanical Property of Mo Nanopowders)

  • 김해곤;김길수;오승탁;석명진;김영도
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.386-390
    • /
    • 2007
  • The sintering behavior and mechanical property of Mo nanopowder was investigated as a function of various sintering condition. Mo oxide nanopowders were milled using a high energy ball-milling process. After the ball milling for 20h, the crystalline size of $MoO_3$ was about 20 nm. The $MoO_3$ nanopowders were reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The sinterability of Mo nanopowder and commercial Mo powder was investigated by dilatometric analysis. Mo nanopowder and commercial Mo powder were sintered at $1200^{\circ}C$ for 1 hand $1500^{\circ}C$ for 3 h, respectively. In both specimens the measured relative density was about 95%. But the measured hardness values were 2.34 GPa for nanopowder and 1.87 GPa for commercial powder. Probably due to finer grain size of the sintered body prepared from Mo nanopowder than that prepared using commercial Mo powder. The mean grain sizes were measured to be about 1.4 mm and 6.2 mm, respectively.

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • 한국수소및신에너지학회논문집
    • /
    • 제12권1호
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF