• Title/Summary/Keyword: High energy ball-milling

Search Result 205, Processing Time 0.035 seconds

Effect of Ti addition on the fracture toughness of Al-Ti-B alloys synthesized by high energy ball milling and spark plasma sintering (고 에너지 볼 밀링과 SPS 성형에 의해 제조된 Al-Ti-B합금의 파괴인성에 미치는 Ti의 영향)

  • 김지희;김선진;김준기
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.84-84
    • /
    • 2003
  • The effects of Ti addition on microstructure and mechanical properties of (Al+Xat.%Ti)2at%B (X=0.5, 1, 2) fabricated by mechanical alloying and spark plasma sintering (SPS) were investigated. These alloys were prepared by high energy ball milling (attritor) and then fracture toughness was investigated by using a charpy impact tester. The SPS method was used to consolidate (Al+Xat.%Ti)fat.%B with the pressure of 50MPa. The powders were successfully consolidated to alloy which the theoretical density is 99%. It was confirmed that the fracture toughness of Al-Bat.% matrix composites was increased by the addition of Ti.

  • PDF

A Study on the Surface Roughness of Aluminum Alloy for Heat Exchanger Using Ball End Milling

  • Chung, Han-Shik;Lee, Eun-Ju;Jeong, Hyo-Min;Kim, Hwa-Jeong
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-69
    • /
    • 2015
  • Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball endmilling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball endmilling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

Effect of Silicon Content over Fe-Cu-Si/C Based Composite Anode for Lithium Ion Battery

  • Doh, Chil-Hoon;Shin, Hye-Min;Kim, Dong-Hun;Chung, Young-Dong;Moon, Seong-In;Jin, Bong-Soo;Kim, Hyun-Soo;Kim, Ki-Won;Oh, Dae-Hee;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.309-312
    • /
    • 2008
  • Two different anode composite materials comprising of Fe, Cu and Si prepared using high energy ball milling (HEBM) were explored for their capacity and cycling behaviors. Prepared powder composites in the ratio Cu:Fe:Si = 1:1:2.5 and 1:1:3.5 were characterized through X-Ray diffraction (XRD) and scanning electron microscope (SEM). Nevertheless, the XRD shows absence of any new alloy/compound formation upon ball milling, the elements present in Cu(1)Fe(1)Si(2.5)/Graphite composite along with insito generated Li2O demonstrate a superior anodic behavior and delivers a reversible capacity of 340 mAh/g with a high coulombic efficiency (98%). The higher silicon content Cu(1)Fe(1)Si(3.5) along with graphite could not sustain capacity with cycling possibly due to ineffective buffer action of the anode constituents.

Fabrication of WC/Co composite powder from oxide of WC/Co hardmetal scrap by carbothermal reduction process (WC/Co 초경합금 스크랩 산화물로부터 환원/침탄공정에 의한 WC/Co 복합분말 제조)

  • Lee, Gil-Geun;Lim, Young Soo
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.240-245
    • /
    • 2018
  • This study focuses on the fabrication of a WC/Co composite powder from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere for the recycling of WC/Co hardmetal. Mixed powders are manufactured by mechanically milling the oxide powder of WC-13 wt% Co hardmetal scrap and carbon black with varying powder/ball weight ratios. The oxide powder of WC-13 wt% Co hardmetal scrap consists of $WO_3$ and $CoWO_4$. The mixed powder mechanically milled at a lower powder/ball weight ratio (high mechanical milling energy) has a more rapid carbothermal reduction reaction in the formation of WC and Co phases compared with that mechanically milled at a higher powder/ball weight ratio (lower mechanical milling energy). The WC/Co composite powder is fabricated at $900^{\circ}C$ for 6 h from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere. The fabricated WC/Co composite powder has a particle size of approximately $0.25-0.5{\mu}m$.

Thermal Stability and Properties of Cu-$TiB_2$ Nanocomposites Prepared by Combustion Synthesis and Spark-plasma Sintering

  • Kwon, Dae-Hwan;Nguyen, Thuy Dang;Dudina, Dina;Kum, Jong-Won;Choi, Pyuck-Pa;Kim, Ji-Soon;Kwon, Young-Soon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1203-1204
    • /
    • 2006
  • Cu-$TiB_2$ nanocomposite powders were synthesized by combining high-energy ball-milling of Cu-Ti-B mixtures and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.%$TiB_2$ powders were produced by SHS reaction and ball-milled. The milled SHS powder was mixed with Cu powders by ball milling to produce Cu-2.5wt.%$TiB_2$ composites. $TiB_2$ particles less than 250nm were formed in the copper matrix after SHS-reaction. The releative density, electrical conductivity and hardness of specimens sintered at $650-750^{\circ}C$ were nearly 98%, 83%IACS and 71HRB, respectively. After heat treatment at 850 to $950^{\circ}C$ for 2 hours under Ar atmosphere, hardness was descedned by 15%. Our Cu-$TiB_2$ composite showed good thermal stability at eleveated temperature.

  • PDF

Preparation and characteristics of modified Ni/YSZ cermet for high temperature electrolysis (고온 수전해 전극용 modified Ni/YSZ cermet 제조 및 전극특성)

  • Chae, Ui-Seok;Park, Geun-Man;Hong, Hyeon-Seon;Choo, Soo-Tae;Yun, Yongseung
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.2
    • /
    • pp.98-107
    • /
    • 2004
  • Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by dry or wet mechanical alloying methods. The Ni/YSZ composit particle was directly fabricated from the ball milling of Ni and YSZ powder or obtained from the reduction of NiO/YSZ particle after the ball milling of NiO and YSZ. In the case of the NiO/YSZ composite particle, the dry milling increased the average particle size whereas the wet milling decreased the size. The dry milling showed that fine YSZ particles were distributed over large Ni surfaces while Ni and YSZ particles similar in size were well mixed in the wet milling method. These features were the same in the Ni/YSZ composite particle prepared from Ni and YSZ powders. The electrical conductivity of the wet-milled Ni/YSZ cermet showed the highest value of $2{\times}10^2S/cm$ among the specimens and this value was increased to $1.4\times10^4S/cm$ after the sintering at $900^\circ{C}$ for 1 h.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling (Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향)

  • Junho Lee;Seonghyun Park;Sang-Hwa Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.