• Title/Summary/Keyword: High efficiency removal

Search Result 1,359, Processing Time 0.032 seconds

Study on the Removal Efficiency of Nitrogen and Phosphorus in Wastewater Treatment System Using Magnetite Powder (자철광 분말을 이용한 하수처리시스템의 질소, 인 제거효율에 관한 연구)

  • Jo, Eun-Young;Park, Seung-Min;Yeo, In-Seol;Moon, Joeng-Sik;Park, Ju-Young;Kim, Jong-Cheol;Kim, Yang-Seob;Park, Chan-Gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.43-47
    • /
    • 2015
  • As water quality regulations have tightened, many studies to improve wastewater treatment efficiency have been performed. In this study, magnetite powder was used to maintain a high concentration of MLSS in lab-scale wastewater treatment system. After magnetite powder injection, MLSS concentration was above 8,000 mg/L and it was 3.2 times higher than control group(2,500 mg/L). In addition, nitrogen removal efficiency and phosphorus removal efficiency comparing with the control group was increased 20.5% and 11%, respectively.

Determination optimal ratio of ammonium to nitrite in application of the ANAMMOX process in the mainstream (Mainstream ANAMMOX 공정 적용시 암모니아성 질소 대비 아질산성 질소 비율 도출 연구)

  • Lee, Dawon;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • As the concentration of nitrogen in the sewage flowing into the sewage treatment plant increases due to urbanization and industrialization, the degree of adverse effects such as eutrophication and toxicity to the aquatic ecosystem is also increasing. In order to treat sewage containing high concentration of nitrogen, various studies on the biological nitrogen removal process are being conducted. Existing biological nitrogen removal processes require significant costs for supplying oxygen and supplementing external carbon sources. In this respect, as a high-level nitrogen removal process with economic improvement is required, an anaerobic ammonium oxidation process (ANAMMOX), which is more efficient and economical than the existing nitrification and denitrification processes, has been proposed. The purpose of this study is to confirm the stability of the ANAMMOX process in the water treatment process and to derive the ratio of ammonia nitrogen (NH4+) to nitrite nitrogen (NO2-) for the implementation of the mainstream ANAMMOX process. A laboratory-scale Mainstream ANAMMOX reactor was operated by applying the ratio calculated based on the substrate ratio suggested in the previous study. In the initial range, the removal efficiency of NH4+ was 58~86%, and the average removal efficiency was 70%. In the advanced range, the removal efficiency of NH4+ was 94~99%, and the average removal efficiency was 95%. As a result of the study, as the NH4+/NO2- ratio increased, the stability of the mainstream ANAMMOX process was secured, and it was confirmed that the NH4+ removal efficiency and the total nitrogen (TN) removal efficiency increased. As a result, the results of this study are expected to be used as basic data in the application of the ANAMMOX process in the mainstream.

Chemical/Electro-Chemical Method for Swine Wastewater Treatment (화학적/전기화학적 방법을 이용한 돈사폐수 처리)

  • Yoon, S.J.;Jo, W.S.;Kim, C.H.;Park, J.I.;Shin, J.S.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.641-648
    • /
    • 2003
  • In a batch mode treatment process, which electrolyzes the wastewater after derivation of N-P crystal formation and recovery, the characteristics of pollutant removal induced with the changes of loading rate and hydraulic retention time were studied. $MgCl_2$ was used as Mg source for the formation of struvite and the molar ratio of $MgCl_2$ to $PO_4^{3-}$ in influent was 1.3. When analyzing the average treatment efficiencies and removal characteristics obtained from four separate operations (Run I, II, III, IV), removal efficiencies of PO43- was not function of its loading rate. Under a condition of sufficient aeration and Mg source provided, over 88% of $PO_4^{3-}$ was eliminated by the formation of MAP without any pH adjustment, in spite of loading rate variation. An optimum-loading rate of NH4-N to achieve high removal efficiency was approximately $100g/m^3/d$. Below that loading rate, the removal of NH4-N was proportional to the loading rate into the system, and hence stable and high removal efficiency, over 90%, was achieved. However, when the loading rate increased over that rate, removal efficiency began to drop and fluctuate. Removal efficiency of TOCs was dependant upon the hydraulic retention time ($r^2$=0.97), not upon the loading rate. Stable and high color removal (94%) was obtained with 2 days of HRT in electrolysis reactor.

Application of Pore-controllable Fiber Filter(PCF) as a Pretreatment for Water Treatment Process (정수처리공정 전처리로서의 공극제어 섬유여과기(PCF)의 적용)

  • Lee, Chul-Woo;Lee, Byung-Goo;Lee, Il-Kuk;Lee, Shun-Hwa;Bae, Sang-Dae;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.235-244
    • /
    • 2006
  • A PCF(Pore Controllable Fiber Filter) process was applied as a pretreatment of water treatment for reduction of turbidity. The experimental results obtained from the PCF showed that the removal efficiency of turbidity without coagulation was around over 70 percent. However, the removal efficiency of turbidity by the coagulation-PCF process was high as much as over 95%. Thus, the coagulation pretreatment was required for the better operation of the PCF. The SEM (Scanning Electron Microscope) images of fiber before and after filtration showed that the filtration mechanism of PCF filter is both controlling attachment mechanism and Sieving mechanism through fiber pore. For the coagulation-PCF process, optimum dosage of coagulant was needed for the economical operation, and for this, determining the optimum dosage by using a filter column test. Also only 16mg/L of alum was used to obtain high algae removal efficiency over 90%. Therefore, it can be concluded that coagulation-PCF process is very effective pretreatment process for algae removal.

A Experimental Study on the Performance of Filter-integrated Half-masks (우리나라 면체 여과식마스크 성능에 관한 연구)

  • 변임근;이영섭
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.3
    • /
    • pp.3-7
    • /
    • 1990
  • This study is conducted to experiment on the performance test for 20 types of Filter-integrated Half-masks which could not only protect workers exposed to dusty environment, but also improve workability. Results and conclusions are as follows : 1) Respirators that removal efficiency of aerosols is 95 percent or more are 11 kinds(55%), and those who are 99.9 percent or more are 4 kinds(20%). Respirators that inhalation resistance is 4 mm in water or less are 13 kinds(65%), and those who are 6 mm in water or less are 17 kinds(85%). Respirators that efficiency of cumulative inhalation resistance is 100 percent or less are 11 kinds(55%) . 2) Respirators that resistance of moisture inhalation is 6 mm in water or less are 11 kinds(55%). and those who are 10 mm in water or less are 13 kinds(65cio), Respira'tors that ratio of removal efficiency for aerosols between dry and wet conditions is 95 percent or more are 9 kinds(45%). 3) Respirators which are not only 95 percent or more for removal efficiency of aersosls and 6 mm in water or less for inhalation resistance, but also 200 percent or less for efficiency of cumulative inhalation resistance, are 8 kinds(40%). Respirators which are not only 99.9 percent or more for removal efficiency and 6 mm in water or less for inhalation resistance, but also 100 percent or less for efficiency of cumulative inhalation resistance, are 3 kinds(15%). Respirators which are not only 95 percent or more for removal efficiency of aerosols and 6 mm in water or less for inhalation resistance, but also 200 percent or less for efficiency of cumulative inhalation resistance and 10 mm in water or less for resistance of moisture inhalation, are 6 kinds(30%) . 4) As standard rrlodel of artificial human head which would be perhaps different from the true one Is used to experiment fitness test, leakage rate is shown to be more or less high. However, artificial human head shall be accurately examined and follow-up studt. would be conducted in the future.

  • PDF

Ni Nanoparticle-Graphene Oxide Composites for Speedy and Efficient Removal of Cr(VI) from Wastewater

  • Wang, Wan-Xia;Zhao, Dong-Lin;Wu, Chang-Nian;Chen, Yan;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.345-352
    • /
    • 2021
  • In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni-GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67 %. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.

Efficiency of the Hybrid-type Air Purifier on Reducing Physical and Biological Aerosol (복합식 공기청정기의 물리적 및 생물학적 입자상 물질의 제거 효과)

  • Kim, Ki-Youn;Kim, Chi-Nyon;Kim, Yoon-Shin;Roh, Young-Man;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.478-484
    • /
    • 2006
  • There was no significant difference in the CADR (Clean Air Delivery Rate) between physical aerosols, NaCl and smoke, and biological aerosols, airborne MS2 virus and P. fluorescens, which implicate that the hybrid-type of air purifier, applying the unipolar ion emission and the radiant catalytic ionization, imposed identical reduction effect on both physical aerosol and bioaerosol. Ventilation decreases the efficiency of air cleaning by unipolar ionization because high ventilation diminishes the particle concentration reduction effect. The particle removal efficiency decreases with increase in the chamber volume because of the augmented ion diffusion and higher ion wall loss rate. Particle size affects the efficiency of air ionization. The efficiency is high for particles with very small diameter because reduction of charge increases with particle size. If there is no increasing supply of ions, the efficiency of air cleaning by unipolar ionization increases with respect to initial concentration of particles because of the large space charge effect at high particle concentration and amplified electric field.

Removal Efficiency of Water Contents using Inertial Impaction Separator with Change in Relative Humidity (입구 습도 변화에 따른 관성 충돌 방식의 액적 분리장치의 수분제거효율 변화)

  • Song, Dong Keun;Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Kim, Hanseok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For design and incorporation of inertial pre-treatment separator, characteristics of removal of water contents with various operation conditions are needed. In this study, removal efficiency of water droplets at various flowrates (5-14 SCMM) and relative humidity (R.H.) conditions (40%, and 90%) has been investigated. At low R.H. condition, the removal characteristic is similar to the removal of solid particles. But, droplet growth resulting from the condensation of water vapor at high R.H. condition, is significant and it made increase in removal efficiency of droplet phase of water contents. For rapid removal of water contents, an effective method to enhancing condensation growth of water droplets is highly needed.

Surface Modification of Silica Spheres for Copper Removal

  • Kim, Byoung-Ju;Park, Eun-Hye;Kang, Kwang-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.317-320
    • /
    • 2016
  • Efficient copper removal from water was achieved by using surface modified silica spheres with 3-mercaptopropyltrimethoxysilane (MPTMS) using base catalyst. The surface modification of silica spheres was performed by hydrolysis and condensation reactions of the MPTMS. The characteristic infrared absorption peaks at 2929, 1454, and 1343 cm−1 represent the −CH2 stretching vibration, asymmetric deformation, and deformation, respectively. The absorption peaks at 2580 and 693 cm−1 corresponding the −SH stretching vibration and the C-S stretching vibration indicate the incorporation of MPTMS to the surface of silica spheres. Field emission scanning electron microscope (FESEM) image of the surface modified silica sphere (SMSS) shows nano-particles of MPTMS on the surface of silica spheres. High concentration of copper solution (1000 ppm) was used to test the copper removal efficiency and uptake capacity. The FESEM image of SMSS treated with the copper solution shows large number of copper lumps on the surface of SMSS. The copper concentration drastically decreased with increasing the amount of SMSS. The residual copper concentrations were analyzed using inductively coupled plasma mass spectrometer. The copper removal efficiency and uptake capacity with 1000 ppm of copper solution were 99.99 % and 125 mg/g, respectively.

A Study on the Removal Efficiency of the Soil Vapor Extraction by Numerical Simulation (수치모형에 의한 토양증기추출법의 제거효율에 관한 연구 - 차단벽, 추출유량, 펌프가동방법의 영향 -)

  • Lee, Chang-Su
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.121-129
    • /
    • 1999
  • When the soil vapor extraction as a remediation method of contaminated soil and groundwater has been used, the effects of curtain wall, mode of pump operation and magnitude of extraction flowrate were examined by numerical simulation. Consequently, it was found that the removal rate was enhanced in case that the curtain wall was established around the extraction well with the extraction pumps operated alternatively. It was because that the removal of high density gas around the extraction well was possible. It was found that the removal efficiency of TCE gas did not depend on the extraction flowrate. However, the removal rate of TCE gas at varying extraction flowrate was not enhanced flowrate increase.

  • PDF