• Title/Summary/Keyword: High dielectric properties

Search Result 903, Processing Time 0.03 seconds

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.

properties of Metal/$ZrTiO_4$/Metal Capacitors for Microwave Applications (고주파 적용을 위한 금속/$ZrTiO_4$/금속 캐피시터 특성)

  • Park, Chang-Sun;Seon, Ho-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.197-197
    • /
    • 2008
  • There are fast growing demands for new dielectric materials for passive capacitors of RF-ICs and other wireless applications. One of the bulk microwave dielectric materials which have superior properties is $ZrTiO_4$ due to its large dielectric constant and high quality factor. Therefore, $ZrTiO_4$ is worth studying as a form of thin film to be applied for passive capacitors of integrated circuits. In this study, we fabricated metal-insulator-metal type capacitors with $ZrTiO_4$ dielectric thin film, and evaluated their capacitor properties.

  • PDF

Microstructural Characterization and Dielectric Properties of Barium Titanate Solid Solutions with Donor Dopants

  • Kim, Yeon-Jung;Hyun, June-Won;Kim, Hee-Soo;Lee, Joo-Ho;Yun, Mi-Young;Noh, S.J.;Ahn, Yong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1267-1273
    • /
    • 2009
  • The correlation between the sintering temperature and dielectric properties in the $Nb^{5+}\;and\;Ta^{5+}$ doped BaTi$O_3$ solid solutions have been investigated. The samples were sintered at temperatures ranging from 1250 to 1350 ${^{\circ}C}$ for 4 h in air. SEM, XRD and SEM/EDS techniques were used to examine the structure of the samples with particular focus on the incorporation of $Nb^{5+}\;and\;Ta^{5+}$ ions into the BaTi$O_3$ crystal lattice. The X-ray diffraction peaks of (111), (200) and (002) planes of BaTi$O_3$ solid solution doped with different fractions of $Nb^{5+}\;and\;Ta^{5+}$ were investigated. The dielectric properties were analyzed and the relationship between the properties and structure of doped BaTi$O_3$ was established. The fine-grain and high density of the doped BaTi$O_3$ ceramics resulted in excellent dielectric properties. The dielectric properties of this solid solutions were improved by adding a small amount of dopants. The transition temperature of the 1.0 mole% $Ta^{5+}$ doped BaTi$O_3$ solid solution was $\sim$110 ${^{\circ}C}$ with a dielectric constant of 3000 at room temperature. At temperatures above the Curie temperatures, the dielectric constant followed the Curie-Weiss law.

Experimental Investigation on Dielectric and Thermal Characteristics of Nanosized Alumina Filler Added Polyimide Enamel

  • Sugumaran, C. Pugazhendhi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.978-983
    • /
    • 2014
  • The polymer nano composite possess good priority recently for engineering applications. Especially the electrical insulating materials attract the high performance of nano composites. In this work the ballmill synthesiation process of nano sized Alumina ($Al_2O_3$), the preparation of new nano composite material with an content of enamel and synthesized Alumina as 1wt%, 3wt% and 5wt%. Experimental investigation has been carried out for the prepared nano composites materials with respect to dielectric parameter measurements such as dielectric loss (tan ${\delta}$), dielectric constant (${\varepsilon}$), dielectric strength under various temperature. The partial discharge level also measured for all the samples and the PD inception voltage is also observed and compared. Weight loss of the material has been analyzed through TGA. It has been experimentally proved that 3wt% of Alumina nano filler added enamel has significant improvement in the dielectric and thermal properties.

Dielectric Properties of Epoxy Composites with Varying Frequency (에폭시 복합체의 주파수 변화에 따른 유전특성)

  • Lee, Ho-Shik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.676-682
    • /
    • 2018
  • In order to study electrical properties of epoxy composites with various frequency. To measure of dielectric characteristics have been performed over a frequency range from 30[Hz] to 3[MHz] and a temperature range of $20[^{\circ}C]$, $100[^{\circ}C]$, $140[^{\circ}C]$. We observed values of dielectric constant and dissipation of the epoxy composites with various frequency. We were observed dielectric loss and dispersion in low frequency region. Also, we observed to decrease of the dielectric constant due to the effects of filler in high temperature region.

Stabilization of the Perovskite Phase and Electrical Properties of Ferroelectrics in the Pb2(Sc,Nb)O6 System

  • Kim, Yeon Jung
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.224-227
    • /
    • 2015
  • Ferroelectric $Pb_2(Sc,Nb)O_6$ were prepared under two different sintering conditions using the oxide mixing method and the electrical properties were measured. The sintering conditions were $1350^{\circ}C$ for 25 minutes and $1400^{\circ}C$ for 20 minutes. EDX spectroscopy and XRD were used to determine the crystalline characteristic of the $Pb_2(Sc,Nb)O_6$ compositions Pyrochlore phase showed about 2% in all $Pb_2(Sc,Nb)O_6$ specimens. It expands the growth of crystals in samples sintered at $1400^{\circ}C$ than $1350^{\circ}C$, but all samples were the optimal crystallization. The temperature and frequency dependence of the complex dielectric constant and admittance were measured to analyze the electrical properties. The high dielectric constant of the specimens reflects the good stoichiometry and crystallization. The maximum value of the dielectric constant in the two specimens treated with sintering at $1350^{\circ}C$ and $1400^{\circ}C$ were more than 27,000, and the dielectric loss at room temperature is smaller than 0.05. The maximum dielectric constant decreased with increasing frequency, the transition temperature also increased in $Pb_2(Sc,Nb)O_6$ compositions. The admittance and susceptance values reach a peak at all temperatures, and the magnitude of the peak increases with increasing measuring temperature. Strong frequency dependent of maximum admittance, susceptance, dielectric constant and dielectric loss were observed.

Polyethylene-Based Dielectric Composites Containing Polyhedral Oligomeric SilSesquioxanes Obtained by Ball Milling

  • Guo, Meng;Frehchette, Michel;David, Eric;Demarquette, Nicole Raymonde
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.53-61
    • /
    • 2015
  • High-energy ball milling was tested as a method for producing Ultra High Molecular Weight Polyethylene (UHMWPE)- based nanodielectrics containing 1 wt% and 5 wt% OctaIsoButylPOSS (OibPOSS). Qualitative and quantitative evaluations were used to explore the compatibility between OibPOSS and PE. Several ball milling variables were optimized in a bid to achieve UHMWPE/OibPOSS nanodielectrics. The morphology, as well as the thermal and the dielectric properties of the samples, were characterized by scanning electron microscopy, thermogravimetric analysis, broadband dielectric spectroscopy, and progressive-stress breakdown tests. The results showed that (i) ball milling was an effective method for producing UHMWPE/OibPOSS dielectric composites, but appeared ineffective in dispersing OibPOSS at the nanoscale, and (ii) the resulting UHMWPE/OibPOSS dielectric composites presented thermal and dielectric properties similar to those of neat UHMWPE.

A Study on Dielectric Properties of XLPE for High Voltage (고압용 XLPE의 유전특성에 관한 연구)

  • Lee, Yong-Sung;Lee, Kyung-Yong;Lee, Kwan-Woo;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1561-1563
    • /
    • 2004
  • In this paper, we researched the dielectric properties and voltage dependence on slice XLPE sheet from 22[kV] and 154[kV] power cable. We studied effects for impurities and water for semiconductor shield through a dielectric properties experiment to estimate performance of insulating materials in power cable. Capacitance and tan${\delta}$ of 22[kV], 154[kV] were 53/43[pF] and $7.4{\times}10^{-4},\;2.1510^{-4}$. In these results, the trend was increased with the increase of temperature. The tan${\delta}$ of XLPF/ semiconductor layer was increased as compared with that of XLPE. Dielectric properties reliability of tan${\delta}$ was small.

  • PDF

Dielectric Properties of the Hole Injection Layer(AF) for OLEDs (OLED용 정공주입층(AF)의 유전특성)

  • Lee, Young-Hwan;Lee, Kang-Won;Shin, Jong-Yeol;Kim, Tae-Wan;Lee, Chung-Ho;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.409-410
    • /
    • 2008
  • We studied dielectric properties of Organic Light-emitting Diodes(OLEDs) depending on applied voltage of AF(Amorphous Polytetrafluoroethylene), material of hole injection layer in structure of ITO/hole injection layer (AF)/Al. AF is deposited 5 [nm] as deposition rate of 0.1~0.2 [$\AA$/s] in high vacuum of $5\times10^{-6}$ [Torr]. In result of these studies, we can know dielectric properties of OLEDs. The impedance decreases as the applied voltage increases and the Cole-Cole plots of devices are decreases as the applied voltage increases.

  • PDF

Flexural Strength and Dielectric Properties of in-situ Si3N4-SiO2-BN Composite Ceramics (반응소결된 Si3N4-SiO2-BN 복합체의 기계적 강도 및 유전물성에 관한 연구)

  • Lee, Hyun Min;Lee, Seung Jun;Baek, Seungsu;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.386-391
    • /
    • 2014
  • Silicon nitride ($Si_3N_4$) is regarded as one of the most promising materials for high temperature structural applications due to its excellent mechanical properties at both room and elevated temperatures. However, one high-temperature $Si_3N_4$ material intended for use in radomes has a relatively high dielectric constant of 7.9 - 8.2 at 8 - 10 GHz. In order to reduce the dielectric constant of the $Si_3N_4$, an in-situ reaction process was used to fabricate $Si_3N_4-SiO_2$-BN composites. In the present study, an in-situ reaction between $B_2O_3$ and $Si_3N_4$, with or without addition of BN in the starting powder mixture, was used to form the composite. The in-situ reaction process resulted in the uniform distribution of the constituents making up the composite ceramic, and resulted in good flexural strength and dielectric constant. The composite was produced by pressure-less sintering and hot-pressing at $1650^{\circ}C$ in a nitrogen atmosphere. Microstructure, flexural strength, and dielectric properties of the composites were evaluated with respect to their compositions and sintering processes. The highest flexural strength (193 MPa) and lowest dielectric constant (5.4) was obtained for the hot-pressed composites. The strength of these $Si_3N_4-SiO_2$-BN composites decreased with increasing BN content.