• Title/Summary/Keyword: High density power

Search Result 2,175, Processing Time 0.033 seconds

A Compact C-Band 50 W AlGaN/GaN High-Power MMIC Amplifier for Radar Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Han, Byoung-Gon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.498-501
    • /
    • 2014
  • A C-band 50 W high-power microwave monolithic integrated circuit amplifier for use in a phased-array radar system was designed and fabricated using commercial $0.25{\mu}m$ AlGaN/GaN technology. This two-stage amplifier can achieve a saturated output power of 50 W with higher than 35% power-added efficiency and 22 dB small-signal gain over a frequency range of 5.5 GHz to 6.2 GHz. With a compact $14.82mm^2$ chip area, an output power density of $3.2W/mm^2$ is demonstrated.

SiC based Technology for High Power Electronics and Packaging Applications

  • Sharma, Ashutosh;Lee, Soon Jae;Jang, Young Joo;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • Silicon has been most widely used semiconductor material for power electronic systems. However, Si-based power devices have attained their working limits and there are a lot of efforts for alternative Si-based power devices for better performance. Advances in power electronics have improved the efficiency, size, weight and materials cost. New wide band gap materials such as SiC have now been introduced for high power applications. SiC power devices have been evolved from lab scale to a viable alternative to Si electronics in high-efficiency and high-power density applications. In this article, the potential impact of SiC devices for power applications will be discussed along with their Si counterpart in terms of higher switching performance, higher voltages and higher power density. The recent progress in the development of high voltage power semiconductor devices is reviewed. Future trends in device development and industrialization are also addressed.

A Study on Optimal Design of Capacitance for Active Power Decoupling Circuits (능동 전력 디커플링 회로의 커패시턴스 최적 설계에 관한 연구)

  • Baek, Ki-Ho;Park, Sung-Min;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Active power decoupling circuits have emerged to eliminate the inherent second-order ripple power in a single-phase power conversion system. This study proposes a design method to determine the optimal capacitance for active power decoupling circuits to achieve high power density. Minimum capacitance is derived by analyzing ripple power in a passive power decoupling circuit, a buck-type circuit, and a capacitor-split-type circuit. Double-frequency ripple power decoupling capabilities are also analyzed in three decoupling circuits under a 3.3 kW load condition for a battery charger application. To verify the proposed design method, the performance of the three decoupling circuits with the derived minimum capacitance is compared and analyzed through the results of MATLAB -Simulink and hardware-in-the-loop simulations.

Proposal of Lighting Power Density for Road Lighting (도로종류에 따른 조명전력 허용기준([W/m2]) 제안)

  • Lee, Sang-Jin;Lee, Min-Wook;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.42-47
    • /
    • 2011
  • The design of road lighting is aiming illuminance and luminance requirements for road lighting. In the process, various factors associated with luminaires such as luminous efficacy, light distribution, mounting height, spacing and maintenance factor are considered. However, there has been no restriction on lighting power density. In this study, lighting power density has been comparatively analyzed through a study of related data and a result of measurements on domestic roads. And, it has been analyzed by simulation results for road in which lighting conditions are variable. In terms of the limitation on power density for road lighting, road lighting can be designed using high efficacy lighting systems for energy saving.

Design and Implementation of 500 kHz High Frequency LLC Resonant Converter for High Power Density (높은 전력밀도를 갖는 500 kHz 고주파 LLC 컨버터의 설계와 구현)

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • In order to decrease the size of a switch mode power supply, high switching frequency can be an efficient way to reduce the size of passive components in the converter. In this paper, a 500-kHz high-frequency LLC resonant converter is proposed with an accurate design method of magnetizing inductance, as well as the relationship between the switching frequency and the size of the passive components. Simulation and experimental results are presented to verify the proposed methods and equations, including the temperature data of each passive and active device of the converter. Using those results, dominant power losses in the prototype converter under 500-kHz high-frequency operation are investigated, compared with the results from a 100-kHz converter. In addition, operating waveforms and power conversion efficiency will be shown to obtain design considerations for the high switching frequency LLC resonant converter.

Development of Interior type Permanent Magnet Synchronous Motor for Electric Golf Car (전동 골프카 구동용 매입형 영구자석 동기전동기 개발)

  • Oh, Young-Jin;Ryu, Sung-Lay;Kim, Ji-Hyun;Lee, In-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1025-1026
    • /
    • 2007
  • Recently study on components for a electric golf car and a utility car driven by a electric motor has been performed actively, and the study on a drive motor, a inverter and a battery focuses on a small, light weight and high power density source to improve fuel efficiency using limited electric energy. Especially, since a utility car such as a golf car performance depends on initial acceleration and maximum speed capability, a drive system requires high power and large and wide operation area, This study therefore investigates on the interior permanent magnet synchronous motor with high power density and wide operation, and is verified with the test result after design and characteristic analysis is performed

  • PDF

Design of the High Density Power Supply with Flat Transformer (Flat Transformer를 적용한 고밀도 전원장치 설계)

  • Baek J.W.;Kim J.H.;Yoo D.W.;Kim J.S.;Ryu M.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.248-256
    • /
    • 2005
  • This paper presents the design method of the DC/DC converter using flat transformer which is suitable for midium or large capacity and high density power supply. Flat transformer module is composed and manufactured of multi-transformers in parallel and has a number of parallel single turn secondary windings. Therefore, its leakage inductance is highly decreased and it is more suitable for high frequency operation than conventional one. In this paper, we manufactured and tested 750W AC/DC converter with variable output powers to verify the performance of the flat transformer.

Series Capacitor Compensated Resonant High Frequency Inverter with ZCS-Pulse Density Modulation fey Induction Heating Fixing Roller in Copy Machine

  • Ahmed T.;Shirai H.;Gamage L.;Soshin K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.499-502
    • /
    • 2003
  • This paper presents the voltage source type half bridge lossless auxiliary inductor snubber assisted series capacitor compensated resonant high frequency inverter for induction heated fixing roller in copy machines. This high-frequency inverter treated here can completely achieve zero current soft switching (ZCS) commutation for wide power regulation range under its constant frequency pulse density modulation (PDM) scheme. Its transient and steady-state operating principle is originally presented fur a constant frequency PDM control strategy under a ZCS operation commutation, together with its output effective power regulation characteristics-based on the PDM strategy. The experimental operating performances of this ZCS-PDM high frequency inverter using IGBTs are illustrated as compared with computer simulation ones. Its power losses and actual efficiency are evaluated and discussed on the basis of simulation and experimental results.

  • PDF

An Efficient Interpolation FIR Filter Using LUT

  • Kim, Dae-Ik;Lee, Chang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.219-222
    • /
    • 2009
  • An efficient interpolation FIR filter structure for high-density and low-power electronic devices is proposed. The proposed structure is based on polyphase decomposition property and look-up table method. By computer-aided design simulations, it is shown that the use of the proposed method can result in reduction in the number of gates by 54% and can reduce power consumption by 9%.

Mechanical Properties of Silicon Nitride Laser-Assisted Machined by Laser Power (레이저 출력에 따른 레이저예열선삭된 질화규소의 기계적 특성)

  • Kim, Jong-Do;Lee, Su-Jin;Shin, Ding-Sig;Suh, Jeong;Lee, Jae-Hoon
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.12-16
    • /
    • 2009
  • The engineering ceramic is one of the materials advantageous in various conditions with high strength, endurance at high temperature, abrasion resistance and corrosion resistance, etc. However, due to high strength and high brittleness, ceramic incurs high costs and long time on finishing process required after sintering. So a process for obtaining wanted measurements of them has been studied using the high temperature which makes ceramics softened and heat affected recently. This study makes an estimate of laser-assisted machining (LAM) if an economically practical process for manufacturing precision silicon nitride ceramic parts using laser beam. In this study, mechanical properties of silicon nitride at high temperature were observed. And during the LAM, it was observed that cutting force and tool wear were reduced and oxidation of machined surface was increased according to a increase of laser power.

  • PDF