• 제목/요약/키워드: High current inductor

검색결과 354건 처리시간 0.024초

동적 전류분담 인덕터를 적용한 ZVT 풀 브리지 컨버터의 병렬 운전 (The Parallel Operation of ZVT-Full Bridge Converter with Dynamic Current Shared Inductor)

  • 배진용;김용;백수현;권순도;이규훈;김철진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.942-945
    • /
    • 2001
  • This paper presents parallel operation of ZVT(Zero Voltage Transition) Full Bridge Converter with Dynamic Current Shared Inductor. In the conventional method, CT(Current Transformer) have been used to share the load current equally with converters. In this system, at parallel operation of ZVT Full Bridge Converter, dynamic current shared inductor divides the same current of unit converter and ZVT circuit aids to high efficiency. This method which is proposed to compare in the conventional method will do simple control circuit. To show the superiority of this converter is verified through the experiment with a 2kW, 50kHz prototype converter.

  • PDF

A Novel Grounded Inductor Realization Using a Minimum Number of Active and Passive Components

  • Yuce, Erkan;Minaei, shahram;Cicekoglu, Oguzhan
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.427-432
    • /
    • 2005
  • In this study, we present a new topology for realizing a grounded inductor employing only a single current conveyor, called a negative-type modified inverting second-generation current conveyor (MICCII-), and a minimum number of passive components, two resistors, and one capacitor. The non-ideality effects of the MICCII- on a simulated inductor are investigated. To demonstrate the performance of the presented inductance simulator, we use it to construct a third order Butterworth high-pass filter and a parallel resonant circuit. Simulation results are given to confirm the theoretical analysis.

  • PDF

Micro Stacked Spiral Inductor를 이용한 6Gbps 1:2 Demultiplexer 설계 (A 6Gbps 1:2 Demultlplexer Design Using Micro Stacked Spiral inductor in CMOS Technology)

  • 최정명;범진욱
    • 대한전자공학회논문지SD
    • /
    • 제45권5호
    • /
    • pp.58-64
    • /
    • 2008
  • CMOS $0.18{\mu}m$ 공정을 이용하여 1.8V supply voltage에서 6Gbps 이상의 처리속도를 가지는 1:2 demultiplexer(DEMUX)를 구현하였다. 높은 동작속도를 위하여 Current mode logic(CML)의 Flipflop을 사용하였으며 추가적인 동작속도 향상을 위하여 On-chip micro stacked spiral inductor($10{\times}10{\mu}m^2$)를 사용하였다. 총 12개의 인덕터를 사용하여 $1200{\mu}m^2$의 면적증가만으로 Inductive peaking의 효과를 나타낼 수 있었다. Chip의 측정은 wafer상태로 진행하였고 Micro stacked spiral inductor가 있는 1:2 demultiplexer와 그것이 없는 1:2 demultiplexer를 비교하여 측정하였다. 6Gbps에서 측정결과 Micro stacked spiral inductor를 1:2 demultiplexer가 inductor를 사용하지 않은 구조보다 Eye width가 약3%정도 증가하였고 또한 Jitter가 43%정도 감소하여 개선효과가 있음을 확인하였다. 소비전력은 76.8mW, 6Gbps에서의 Eye height는 180mV로 측정되었다.

Lossless Snubber with Minimum Voltage Stress for Continuous Current Mode Tapped-Inductor Boost Converters for High Step-up Applications

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.621-631
    • /
    • 2014
  • To invigorate the tapped-inductor boost (TIB) topology in emerging high step-up applications for off-grid products, a lossless snubber consisting of two capacitors and three diodes is proposed. Since the switch voltage stress is minimized in the proposed circuit, it is allowed to use a device with a lower cost, higher efficiency, and higher availability. Moreover, since the leakage inductance is fully utilized, no effort to minimize it is required. This allows for a highly productive and cost-effective design of the tapped-inductor. The proposed circuit also shows a high step-up ratio and provides relaxation of the switching loss and diode reverse-recovery. In this paper, the operation is analyzed in detail, the steady-state equation is derived, and the design considerations are discussed. Some experimental results are provided to confirm the validity of the proposed circuit.

일체형 방식의 인덕터 코어에 대한 전자장 해석 (Electromagnetic Field Analysis about Core of Union Type)

  • 김기준
    • 전자공학회논문지 IE
    • /
    • 제46권2호
    • /
    • pp.1-6
    • /
    • 2009
  • 본 연구에서는 초소형 화의 욕구와 고밀도의 내실을 동시에 충족시킬 수 있으며 전자 장해를 발생하지 않는 일체형 인덕터 코어를 개발하기 위한 방법의 하나로 고전류인가에 따른 인덕터의 전자장 특성을 분석하고자하였다. 분석 결과, 인덕터 내부에서는 전자장이 크게 발생하였지만 인덕터 표면에 나타나는 자장분포 값은 매우 미약하여 주위의 다른 전자 부품에 영향을 미칠 정도는 아니었으며, 표면을 벗어나면 그 값은 순식간에 거의 0[T]로 작아지고 있기 때문에 일체형 인덕터를 이용하여 회로를 구성하였을 때 다른 전자 부품들에 대한 전자 장해는 발생하지 않을 것으로 생각된다. 이 결론은 일체형 인덕터 개발에 많은 영향을 미칠 것이며, 특히 인덕터 코어의 특성 분석 및 신뢰도 향상에 많은 도움이 될 것으로 예상된다.

Inductor Design Method of DCM Interleaved PFC Circuit for 6.6-kW On-board Charger

  • You, Bong-Gi;Lee, Byoung-Kuk;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2247-2255
    • /
    • 2017
  • Because the on-board charger (OBC) is installed in electric vehicles (EVs), high power density is regarded as a key technology. Among components of the OBC, inductors occupy more than 30% of the total volume. Thus, it is important to reduce the volume and the weight of inductors while maintaining thermal stability. Discontinuous conduction mode (DCM) can satisfy these requirements; however, only a few studies have adopted the DCM operation for OBCs because of the large inductor current ripple. In this paper, a design process is proposed for application of the DCM operation to OBCs. In order to analyze the inductor losses accurately, a numerical formula for the inductor current ripple is deduced based on a detailed analysis. Two inductors are fabricated using several ferrite cores and powder cores taking into consideration the inductor size, inductor losses, and temperature rise. In order to verify the analysis and design process, experimental results are presented that show that the designed inductors satisfy the requirements of the OBCs.

Coupled Inductor를 사용한 대형수소전기화물차용 7kW급 저전압 컨버터의 설계 및 분석 (Design and Analysis of a 7kW LDC using Coupled Inductor for Heavy Hydrogen Electric Transport Vehicle)

  • 허경현;이우석;최승원;이일운;송형석;이준영
    • 전력전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.37-43
    • /
    • 2020
  • This study proposes a 7kW low-voltage DC-DC converter (LDC) using a coupled inductor (CI) for heavy hydrogen electric transport vehicles. The LDC uses a phase-shift manner for soft switching. SiC-MOSFET is used to reduce the loss of reverse recovery current through the use of a high switching frequency. LDC is require large transformer and inductor because of large output current. The size of transformer and inductor can be reduced by deviding the transformer and inductor into two pieces each. This work presents the experimental results of the proposed circuit.

커플드 인덕터를 적용한 고효율 2상 인터리브드 벅 컨버터 설계 (High Efficiency Two-Phase Interleaved Buck Converter with Coupled Inductor Design)

  • 강현지;김진우;이성민;조영훈
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.350-357
    • /
    • 2020
  • This study presents the design of an 18 kW two-phase interleaved buck converter that uses a coupled inductor for an electric vehicle rapid charger. The designs of a two-phase coupled inductor for current ripple and physical size reduction and a two-phase interleaved buck converter based on silicon carbide metal - oxide - semiconductor field-effect transistor for high efficiency were described in detail. The operating principle of the two-phase interleaved buck converter was analyzed, and the coupled inductor was investigated using a magnetized equivalent circuit. Simulation and experiments were conducted to verify the validity of the proposed two-phase interleaved buck converter, and the theoretical design method and experimental results were confirmed.

An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications

  • Cho, Je-Kwang;Nah, Kyung-Suc;Park, Byeong-Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권2호
    • /
    • pp.83-87
    • /
    • 2004
  • Phase noise performance and current consumption of Radio Frequency (RF) Voltage-Controlled Oscillator (VCO) are largely dependent on the Quality (Q) factor of inductor-capacitor (LC) tank. Because the Q-factor of LC tank is determined by on-chip spiral inductor, we designed, analyzed, and modeled on-chip differential inductor to enhance differential Q-factor, reduce current consumption and save silicon area. The simulated inductance is 3.3 nH and Q-factor is 15 at 2 GHz. Self-resonance frequency is as high as 13 GHz. To verify its use to RF applications, we designed 2 GHz differential LC VCO. The measurement result of phase noise is -112 dBc/Hz at an offset frequency of 100 kHz from a 2GHz carrier frequency. Tuning range is about 500 MHz (25%), and current consumption varies from 5mA to 8.4 mA using bias control technique. Implemented in $0.35-{\mu}m$ SiGe BiCMOS technology, the VCO occupies $400\;um{\times}800\;um$ of silicon area.

Load-Balance-Independent High Efficiency Single-Inductor Multiple-Output (SIMO) DC-DC Converters

  • Ko, Younghun;Jang, Yeongshin;Han, Sok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권3호
    • /
    • pp.300-312
    • /
    • 2014
  • A single-inductor multiple-output (SIMO) DC-DC converter providing buck and boost outputs with a new switching sequence is presented. In the proposed switching sequence, which does not require any additional blocks, input energy is delivered to outputs continuously by flowing current through the inductor, which leads to high conversion efficiency regardless of the balance between the buck and boost output loads. Furthermore, instead of multiple output loop compensation, only the freewheeling current feedback loop is compensated, which minimizes the number of off-chip components and nullifies the need for the equivalent series resistance (ESR) of the output capacitor for loop compensation. Therefore, power conversion efficiency and output voltage ripples can be improved and minimized, respectively. Implemented in a 0.35-${\mu}m$ CMOS, the proposed SIMO DC-DC converter achieves high conversion efficiency regardless of the load balance between the two outputs with maximum efficiency reaching up to 82% under heavy loads.