• 제목/요약/키워드: High cooling rate

검색결과 624건 처리시간 0.029초

SM45C강의 구상화 어닐링조건 최적화 연구 (Optimization of Spheroidizing Annealing Conditions in SM45C Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제19권3호
    • /
    • pp.149-155
    • /
    • 2006
  • The effects of eight types of spheroidizing annealing conditions including annealing temperature, annealing time, cooling rate, and gas atmosphere in the annealing furnace on the microstructure were determined in SM45C steel which has been widely used for automotive parts. The well-developed spheroidized structure and minimum hardness were obtained when the steel was heat-treated 6 hours at $740^{\circ}C$, cooled to $710^{\circ}C$ at a cooling rate of $24^{\circ}C/h$, and then kept for 7 hours at the $710^{\circ}C$ followed by air cooling. In order to increase the productivity and to save the manufacturing cost, it is desirable to apply a faster cooling rate in the spheroidizing annealing. It was found that air cooling was the fastest cooling rate applicable to the SM45C steel. The steel heat treated in air showed the decarburized layer of about $110{\mu}m$ in thickness at the surface of the specimen, resulting in serious problems in the quality of the quenched product.

판형 열교환기에서 유동 과냉도 및 냉각속도가 연속제빙에 미치는 영향 (Effect of supercooling and cooling rate on a continuous ice slurry formation using a plate heat exchanger)

  • 이동규;백종현;홍희기;강채동
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.138-143
    • /
    • 2006
  • The peculiarity of ice slurry, such as liquidity, high heat transfer rate and easy storage can also find to supercooled type dynamic ice storage system(DISS) which is one of the DISS. However, in order to accomplish continuous ice formation in the system without mechanical moving parts, supercooled aqueous solutionshould be formed stable through cooling heat exchanger and be dissoluted in storage tank. In previous research, the time of ice slurry increased as the pressure of the cooling heat exchanger(PHX) increased. In this study, a cooling experiment of an ethylene glycol 7mass% solution was performed with various inlet temperature of the PHX, which has constant brine inlet temperature of $-7^{\circ}C$. The temperature in the storage tank maintained to freezing point of the solution. At results, the time of ice slurry formation increased as the supercooling degree decreased and the cooling rate increased.

  • PDF

고압 축소형 재생냉각형 연소기 개발 (Development of High Pressure Sub-scale Regeneratively Cooled Combustion Chambers)

  • 김종규;이광진;서성현;한영민;최환석
    • 한국추진공학회지
    • /
    • 제13권6호
    • /
    • pp.8-16
    • /
    • 2009
  • 고압 축소형 연소기의 개발에 관하여 기술하였다. 헤드부와 챔버부가 분리형인 연소기와 일체형 재생냉각 방식의 연소기 등 총 4기의 연소기가 개발되었다. 축소형 연소기의 연소 압력은 70 bar이고, 추진제 유량은 5.1~9.1 kg/s이다. 연소성능의 향상을 위해 추진제 유량, 분사기의 recess 수 등을 변화시켰고, 이를 연소시험을 통해 확인하였다. 또한 실물형 연소기에 적용할 재생냉각 채널과 막냉각의 설계 및 제작 기술을 본 축소형 연소기에 적용, 검증하였다.

고 망간 편상흑연주철에서 냉각속도별 공정반응 분석 (Analysis of Eutectic Reaction as a Function of Cooling Rate in High Manganese Flake Graphite Cast Irons)

  • 이상환;이현우;이상목
    • 한국주조공학회지
    • /
    • 제33권4호
    • /
    • pp.162-170
    • /
    • 2013
  • The effects of Mn content and cooling rate on the eutectic reaction of flake graphite cast irons were studied by a combined analysis of macro/micro-structure and cooling curve data. The correlation between the eutectic reaction parameter and macro/microstructure was systematically investigated. Two sets of chemical compositions with different Mn contents were designed to cast. Three types of molds for cylindrical specimens with different diameters were prepared to analyze the cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_U-T_{E,C}$), which is decreased by increasing the Mn content or increasing the cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$, and D-type graphite is mainly suggested to form for ${\Delta}T_1$ below $0^{\circ}C$. Eutectic reaction time (${\Delta}T$), which is increased by increasing the Mn content and decreased by increasing the cooling rate, is regarded as a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in proportion to the decrease of ${\Delta}T$.

하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구 (Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems)

  • 오현종;박성진
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

소형 태핑센터 주축의 열특성 및 주파수 분석 (Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center)

  • 최대봉;김수태;노승국;조현택
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.

ESS(Energy Storage System) 열관리를 위한 액침 냉각 활용에 대한 수치해석 연구 (Numerical Study on using Immersion Cooling for Thermal Management of ESS (Energy Storage System))

  • 함정균;유나영;신명재;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.1-10
    • /
    • 2024
  • The introduction of the sector coupling concept has expanded the scope of ESS utilization, resulting in the importance of thermal management of ESS. To ensure the safe use of the lithium-ion batteries that are used in ESS, it is important to use the batteries at the optimal temperature. To examine the utilization of liquid cooling in ESS, numerical study was conducted on the thermal characteristics of 21700 battery modules (16S2P array) during liquid cooling using Novec-649 as insulating fluid. The NTGK model, an MSMD model in ANSYS fluent, was used to investigate thermal characteristics on the battery modules with liquid immersion cooling. The results show that the final temperature of the battery module discharged at 5 C-rate is 68.9℃ using natural convection and 48.3℃ using liquid cooling. However, the temperature difference among cells in the battery module was up to 0.5℃ when using natural convection cooling and 5.8℃ when using liquid cooling, respectively, indicating that the temperature difference among cells was significantly increased when liquid cooling was used. As the mass flow rate increased from 0.01 kg/s to 0.05 kg/s, the average temperature of the battery module decreased from 48.3℃ to 38.4℃, confirming that increasing the mass flow rate of the insulating fluid improves the performance of liquid immersion cooling. Although partial liquid immersion cooling has a high cooling performance compared to natural convection cooling, the temperature difference between modules was up to 8.9℃, indicating that the thermal stress of the battery cells increased.

플라즈마 침질탄화처리된 순철의 화합물층 특성 (The Characteristics of Compound Layers Formed during Plasma Nitrocarburising in Pure Iron)

  • 조효석;이상윤
    • 열처리공학회지
    • /
    • 제13권3호
    • /
    • pp.143-150
    • /
    • 2000
  • Ferritic plasma nitrocarburising was performed on pure iron using a modified DC plasma unit. This investigation was carried out with various gas compositions which consisted of nitrogen, hydrogen and carbon monoxide gases, and various gas pressures for 3 hours at $570^{\circ}C$. After treatment, the different cooling rates(slow cooling and fast cooling) were used to investigate its effect on the structure of the compound layer. The ${\varepsilon}$ phase occupied the outer part of the compound layer and ${\gamma}^{\prime}$ phase existed between the ${\varepsilon}$ phase and the diffusion zone. The gas composition of the atmosphere influenced the constitution of the compound layer produced, i.e. high nitrogen contents were essential for the production of ${\varepsilon}$ phase compound layer. It was found that with increasing carbon content in the gas mixture the compound layer thickness increased up to 10%. In the gas pressure around 3 mbar, the compound layer characteristics were slightly effected by gas pressure. However, in the low gas pressure and high gas pressure, the compound layer characteristics were significantly changed. The constitution of the compound layer was altered by varying the cooling rate. A large amount of ${\gamma}^{\prime}$ phase was transformed from the ${\varepsilon}$ phase during slow cooling.

  • PDF

자동차용 냉각팬의 설계와 시스템 개선을 통한 저소음화 연구 (Design of automotive engine cooling fan and study on noise reduction through modification of system)

  • 김병주;강상규;김규영;이덕주;이재영;이덕호;신동수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.196-201
    • /
    • 2003
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore, the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, experimental study on the fan and system was carried out and brought a successful result of performance and noise from a designed fan. And through the modification of the fan system, the fan produced more flow rate and became less noisy.

  • PDF

엔진 냉각유로 내의 유동에 관한 수치해석 (A Numerical Simulation of Flows in an Engine Cooling Passage)

  • 허남건;윤성영;조원국;김광호
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.32-40
    • /
    • 1993
  • Flow fields in model engine cooling passages are studied numerically by using TURBO-3D program, a finite volume based 3-D turbulent flow program adopting a general body fitted coordinate system. The effects of exit position on mass flow rate at each gasket hole are examined for a model cooling passage in order to understand the flow distribution inside the water jacket. The results of the present study can be applied to the design of high performance, high reliability engine.

  • PDF