• Title/Summary/Keyword: High accurate scheme

Search Result 246, Processing Time 0.025 seconds

Thermal Stress Analysis for Life Prediction of Power Plant Turbine Rotor (발전용 터빈 로우터의 수명예측을 위한 열응력 해석)

  • 임종순;허승진;이규봉;유영면
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.276-287
    • /
    • 1990
  • In this paper research result of transient thermal stress analysis of power plant turbine rotors for life prediction under severs operating conditions is presented. Galerkin's recurrence scheme is used for numerical solution of discretized FEM equation of transient heat conduction equation. Boundary conditions for the equation and operating conditions are intensively investigated for accurate life prediction of turbine rotors in operation. A computer program for on-site application is developed and tested. Distribution of thermal stress in turbine rotors during various operating condition is analyzed with the program and it is found that the peak thermal stress appears during cold stage conditions at the first stage of high pressure rotors.

Time-Domain Quantization and Interpolation of Pitch Cycle Waveform

  • Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, a pitch cycle waveform (PCW) is extracted, quantized, and interpolated in a time domain to synthesize high-quality speech at low bit rates. The pre-alignment technique is proposed for the accurate and efficient PCW extraction, which predicts the current PCW position from the previous PCW position assuming that pitch periods evolve slowly. Since the pitch periods are different frame by frame, the original PCW is converted into the fixed-dimension PCW using the dimension-conversion method, and subsequently quantized by code-excited linear predictive (CELP) coding. The excitation signal for the linear predictive coding (LPC) synthesis filter is generated using the time-domain interpolation and interlink of the quantized PCW's. The coder operates at 4.2 kbit/s and 3.2 kbit/s depending on the pitch period. Informal listening test demonstrates the effectiveness of the proposed coding scheme.

A new approach to control of variable reluctance motors for DD robots (DD 로봇용 VR 모터의 제어를 위한 새로운 방식)

  • 김창환;하인중;하태균;고명삼;김동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.664-669
    • /
    • 1992
  • In this paper, we present a DSP-based high dynamic performance torque control scheme of variable reluctance motors(VRM's) for DD(Direct Drive) robots via function inversion technique. The VRM with our controller behaves like DC motors, and hence developed torque tracks given torque command accurately with no torque ripples. Furthermore, our torque control algorithm ensures the production of maximum constant torque under maximum current limitation, minimizes power loss in each phase resistance, and takes magnetic saturation effect into account. Also, since our control algorithm is represented in the form of look-up table, it can be easily implemented with simple digital circuits and this tabular design method is computationally more accurate and simpler compared to the prior methods.

  • PDF

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulations (II) - Static Error Analysis - (LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (II) - 정적 오차 해석 -)

  • Park, No-Ma;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.984-994
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy simulation is evaluated by a spectral, static error analysis. To investigate the effect of numerical dissipation on LES solutions, power spectra of discretization errors are evaluated for isotropic turbulence models in both continuous and discrete wavevector spaces. Contrary to the common belief, the aliasing errors from upwind-biased schemes are larger than those from comparable non-dissipative schemes. However, this result is the direct consequence of the definition of the power spectral density of the aliasing error, which poses the limitation of the static error analysis for upwind schemes.

Heuristic rule-based coordination of Distance Relaying in Transmission System (경험적 룰에 의한 송전계통의 거리계전 방식 협조)

  • Lee, Seung-Jae;Lee, Byeong-Chil;Yoon, Sang-Hyun;Yoon, Man-Chul;Lee, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.121-124
    • /
    • 1990
  • Distance relaying is one of the most commonly used protection schemes in the high voltage transmission systems. In this scheme, coordination between the primary and backup relays is very critical for the power system security. This paper reports an rule-based methodology for checking and correction of miscoordination problems in the distance relaying. Diagnosis rules achieving an accurate but simple checking have been developed through the geometric analysis of the impedance characteristics of the distance relays. Heuristic rules having the pratical power for miscoordination correction are suggested. The proposed method has proved very effective through the several case studies on the actual systems.

  • PDF

Localization Techniques Based on Image Sensor and Visible Light Communication (이미지 센서 및 가시광 통신 기반 위치 추정 기술)

  • Le, Nam-Tuan;Ifthekhar, Md. Shareef;Mondal, Ratan Kumar;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.37-41
    • /
    • 2016
  • Localization is one of the key issues of demandable applications, especially smart services. Beside the traditional GPS based localization technique, the localization issue by visible light communications is promising market because of possibility of combining visible light communications with positioning technique for a high accurate, especially indoor localization service. This paper provides the overview and new image sensor scheme for localization issue based on visible light communication. The survey is introduced from core techniques to enhancement issues of localization. We hope these will be the essential references for the impact selection method in implementation and standardization issues.

Simple Estimation Scheme for Initial Rotor Position and Inductances for Effective MTPA-Operation in Wind-Power Systems using an IPMSM

  • Kang, Yi-Kyu;Jeong, Hea-Gwang;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.396-404
    • /
    • 2010
  • This paper presents simple schemes used to estimate the initial rotor position and the d- and q-axis inductances for effective Maximum Torque per Ampere (MTPA) operation in a wind-power system using an IPMSM (Interior Permanent Magnet Synchronous Machine). An IPMSM essentially requires an exact coordinate transformation and accurate inductance values to use a reluctance torque caused by the saliency characteristic. In the proposed high-frequency voltage testing method, there is no voltage drop caused by the resistance and the electromotive force. The initial rotor position and the inductance can be measured through an analysis of the stator current without turning the rotor. The experimental results are presented in order to illustrate the feasibility of the proposed method.

Locally weighted linear regression prefetching method for hybrid memory system (하이브리드 메모리 시스템의 지역 가중 선형회귀 프리페치 방법)

  • Tang, Qian;Kim, Jeong-Geun;Kim, Shin-Dug
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.12-15
    • /
    • 2020
  • Data access characteristics can directly affect the efficiency of the system execution. This research is to design an accurate predictor by using historical memory access information, where highly accessible data can be migrated from low-speed storage (SSD/HHD) to high-speed memory (Memory/CPU Cache) in advance, thereby reducing data access latency and further improving overall performance. For this goal, we design a locally weighted linear regression prefetch scheme to cope with irregular access patterns in large graph processing applications for a DARM-PCM hybrid memory structure. By analyzing the testing result, the appropriate structural parameters can be selected, which greatly improves the cache prefetching performance, resulting in overall performance improvement.

Multi-scale U-SegNet architecture with cascaded dilated convolutions for brain MRI Segmentation

  • Dayananda, Chaitra;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.25-28
    • /
    • 2020
  • Automatic segmentation of brain tissues such as WM, GM, and CSF from brain MRI scans is helpful for the diagnosis of many neurological disorders. Accurate segmentation of these brain structures is a very challenging task due to low tissue contrast, bias filed, and partial volume effects. With the aim to improve brain MRI segmentation accuracy, we propose an end-to-end convolutional based U-SegNet architecture designed with multi-scale kernels, which includes cascaded dilated convolutions for the task of brain MRI segmentation. The multi-scale convolution kernels are designed to extract abundant semantic features and capture context information at different scales. Further, the cascaded dilated convolution scheme helps to alleviate the vanishing gradient problem in the proposed model. Experimental outcomes indicate that the proposed architecture is superior to the traditional deep-learning methods such as Segnet, U-net, and U-Segnet and achieves high performance with an average DSC of 93% and 86% of JI value for brain MRI segmentation.

  • PDF

Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator (초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석)

  • Moon, Guee-Won;Jeung, In-Seuck;Choi, Jeong-Yeol;Seiler, Friedrich;Patz, Gunther;Smeets, Gunter;Srulijes, Julio
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.123-132
    • /
    • 2002
  • A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF