• Title/Summary/Keyword: High accurate prediction

Search Result 516, Processing Time 0.023 seconds

Application of Spectral Indices to Drone-based Multispectral Remote Sensing for Algal Bloom Monitoring in the River (하천 녹조 모니터링을 위한 드론 다중분광영상의 분광지수 적용성 평가)

  • Choe, Eunyoung;Jung, Kyung Mi;Yoon, Jong-Su;Jang, Jong Hee;Kim, Mi-Jung;Lee, Ho Joong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • Remote sensing techniques using drone-based multispectral image were studied for fast and two-dimensional monitoring of algal blooms in the river. Drone is anticipated to be useful for algal bloom monitoring because of easy access to the field, high spatial resolution, and lowering atmospheric light scattering. In addition, application of multispectral sensors could make image processing and analysis procedures simple, fast, and standardized. Spectral indices derived from the active spectrum of photosynthetic pigments in terrestrial plants and phytoplankton were tested for estimating chlorophyll-a concentrations (Chl-a conc.) from drone-based multispectral image. Spectral indices containing the red-edge band showed high relationships with Chl-a conc. and especially, 3-band model (3BM) and normalized difference chlorophyll index (NDCI) were performed well (R2=0.86, RMSE=7.5). NDCI uses just two spectral bands, red and red-edge, and provides normalized values, so that data processing becomes simple and rapid. The 3BM which was tuned for accurate prediction of Chl-a conc. in productive water bodies adopts originally two spectral bands in the red-edge range, 720 and 760 nm, but here, the near-infrared band replaced the longer red-edge band because the multispectral sensor in this study had only one shorter red-edge band. This index is expected to predict more accurately Chl-a conc. using the sensor specialized with the red-edge range.

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF

The Effect of the Serum Progesterone and Estradiol Levels of hCG Administration Day on the Pregnancy and Fertilization Rate in IVF-ET Patients (체외수정 과배란 유도에서 hCG 주사 당일의 혈청 Progesterone과 Estradiol 농도가 수정율 및 임신율에 미치는 영향에 관한 연구)

  • Lee, Eun-Sook;Lee, Sang-Hoon;Bae, Do-Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • Controlled Ovarian hyperstimulation(COH) is generally used to obtain synchronous high quality oocytes in in vitro fertilization-embryo transfer(IVF-ET). Many investigators have studied the relationship between serum hormone levels and outcomes of IVF-ET because there is no accurate estimation method of oocyte quality. Early premature luteinization of follicles before oocyte retrieval is the most troublesome problem in COH for IVF-ET. Gonadotropin-releasing hormone agonists(GnRH-a) are used as adjuncts with gonadotropins for COH in patients undergoing in IVF. The possible benefits of GnRH-a pretreatment include improving oocyte quality, allowing a more synchronous cohort of follicles to be recruited, and preventing premature lueinization hormone surges. In COH of IVF cycles, we investigated whether an elevated progesterone(P4) level on the day of human chorionic gonadotropin(hCG) administration indicates premature luteinization and is associated with a lower fertilization rate. Many investigators have studied that the lower fertilization rates seen in patients with elevated P4 levels might result from an adverse effect of P4 on the oocytes. We hypothesizes that serum P4 levels around the day of hCG may be helpful prediction of out come in IVF-ET cycles. Success rates after COH of IVF-ET cycles are dependent upon many variable factors. Follicular factors including the number of follicles, follicular diameters and especially serum estradiol(E2) levels as an indirect measurement of follicular function and guality have been thought to influence the outcomes of IVF-ET. To assess whether serum P4 and E2 levels affect the fertilization and pregnancy rate, we reviewed the stimulation cycles of 113 patients (119 cycles) undergoing IVF-ET with short protocol with GnRH-a, from March 1993 to August 1994 retrospectively. The serum P4 and E2 levels were compared on the day of hCG in the pregnant group, 45 patients(47 cycles) and in the non-pregnant group, 68 patients (72 cycles) respectively. The serum E2 level in non-pregnant group was $1367{\pm}875.8$ pg/ml which was significantly lower than that of pregnant group, $1643{\pm}987.9$ pg/ml( p< 0.01 ). And the serum P4 level in non-pregnant group was $2.1{\pm}1.4$ ng/ml which was significantly higher than that of pregnant group, $1.0{\pm}0.7$ ng/ml( p< 0.001 ). The fertilization rate was $61.3{\pm}21.3%$ in pregnant group which was higher than that of non-pregnant group, $41.1{\pm}20.2%$ (p< 0.01). We suggest that the serum levels of P4 and E2 on the day of hCG administration are additional parameters that predict the outcomes of IVF-ET cycles.

  • PDF

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.

Sensitivity of Simulated Water Temperature to Vertical Mixing Scheme and Water Turbidity in the Yellow Sea (수직 혼합 모수화 기법과 탁도에 따른 황해 수온 민감도 실험)

  • Kwak, Myeong-Taek;Seo, Gwang-Ho;Choi, Byoung-Ju;Kim, Chang-Sin;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.111-121
    • /
    • 2013
  • Accurate prediction of sea water temperature has been emphasized to make precise local weather forecast and to understand change of ecosystem. The Yellow Sea, which has turbid water and strong tidal current, is an unique shallow marginal sea. It is essential to include the effects of the turbidity and the strong tidal mixing for the realistic simulation of temperature distribution in the Yellow Sea. Evaluation of ocean circulation model response to vertical mixing scheme and turbidity is primary objective of this study. Three-dimensional ocean circulation model(Regional Ocean Modeling System) was used to perform numerical simulations. Mellor- Yamada level 2.5 closure (M-Y) and K-Profile Parameterization (KPP) scheme were selected for vertical mixing parameterization in this study. Effect of Jerlov water type 1, 3 and 5 was also evaluated. The simulated temperature distribution was compared with the observed data by National Fisheries Research and Development Institute to estimate model's response to turbidity and vertical mixing schemes in the Yellow Sea. Simulations with M-Y vertical mixing scheme produced relatively stronger vertical mixing and warmer bottom temperature than the observation. KPP scheme produced weaker vertical mixing and did not well reproduce tidal mixing front along the coast. However, KPP scheme keeps bottom temperature closer to the observation. Consequently, numerical ocean circulation simulations with M-Y vertical mixing scheme tends to produce well mixed vertical temperature structure and that with KPP vertical mixing scheme tends to make stratified vertical temperature structure. When Jerlov water type is higher, sea surface temperature is high and sea bottom temperature is low because downward shortwave radiation is almost absorbed near the sea surface.

Prediction of Potential Risk Posed by a Military Gunnery Range after Flood Control Reservoir Construction (홍수조절지 건설 후 사격장 주변지역의 위해성예측 사례연구)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Nam, Kyoung-Phile;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • Risk assessment was carried out in order to improve the remediation and management strategy on a contaminated gunnery site, where a flood control reservoir is under construction nearby. Six chemicals, including explosive chemicals and heavy metals, which were suspected to possess risk to humans by leaching events from the site were the target pollutants for the assessment. A site-specific conceptual site model was constructed based on effective, reasonable exposure pathways to avoid any overestimation of the risk. Also, conservative default values were adapted to prevent underestimation of the risk when site-specific values were not available. The risks of the six contaminants were calculated by API's Decision Support System for Exposure and Risk Assessment with several assumptions. In the crater-formed-area(Ac), the non-carcinogenic risks(i.e., HI values) of TNT(Tri-Nitro-Toluene) and Cd were slightly larger than 1, and for RDX(Royal Demolition Explosives), over 50. The total non-carcinogenic risk of the whole gunnery range calculated to a significantly high value of 62.5. Carcinogenicity of Cd was estimated to be about $10^{-3}$, while that of Pb was about $5\;{\times}\;10^{-4}$, which greatly exceeded the generally acceptable carcinogenic risk level of $10^{-4}{\sim}10^{-6}$. The risk assessment results suggest that an immediate remediation practice for both carcinogens and non-carcinogens are required before the reservoir construction. However, for more accurate risk assessment, more specific estimations on condition shifts due to the construction of the reservoir are required, and more over, the effects of the pollutants to the ecosystem is also necessary to be evaluated.

Studies on the Changes of Sex Hormone Concentrations in Milk during the Reproductive Stages of Dairy Cows (유우의 번식과정에 따른 유즙중의 성호르몬 수준 변화에 관한 연구)

  • 김상근;이재근
    • Korean Journal of Animal Reproduction
    • /
    • v.9 no.1
    • /
    • pp.9-30
    • /
    • 1985
  • The study was carried out to find out the changes of the sex hormone levels in the milk of Holstein cows during the reproductive stages such as the estrous cycle, pregnancy and periparturient period. The FSH, LH, estradiol-17$\beta$ and progesterone from the milk samples were assayed by radioimmunoassay methods. The results of this study were summarized as follows: 1. The levels of progesterone and estradiol-17$\beta$ were similar among inter-quarters, but they were higher in after milking than before milking times, with no statistical significance. 2. The milk progesterone levels during the estrous cycles reached a peak mean level of 3.55$\pm$0.26ng/$m\ell$ at 15 days after estrus and they did not show any differences among the length of estrous cycles. The estradiol-17$\beta$ levels during the estrous cycles showed a peak level of 36.40$\pm$2.38pg/$m\ell$ at estrus, and decreased(17.20$\pm$0.46 pg/$m\ell$ to 18.65$\pm$1.26pg/$m\ell$) at luteal phase. 3. The FSH levels during the estrous cycles ranged from 2.25$\pm$0.23mIU/$m\ell$ to 4.35$\pm$0.24mIU/$m\ell$ showing significant changes. The LH levels during the estrous cycles gradually increased and remained a peak level of 10.90$\pm$0.36mIU/$m\ell$ from 20 to 25 days after estrus. 4. The progesterone levels during the pregnancy were decreased from 30 to 60 days after artificial insemination, and therafter continuously increased until 240 days. The estradiol-17$\beta$ levels during the pregnancy were 24.56$\pm$1.19pg/$m\ell$ at day 30 after artificial inseminaton, and increased rapidly until 180 days. The levles were agagin decreased by 26.17$\pm$3.03pg/$m\ell$ until 210 days and markedly increased by 68.00$\pm$8.70pg/$m\ell$ until 240 days. 5. The prolactin levels during the pregnancy were 31.27$\pm$2.31ng/$m\ell$ and 42.60$\pm$2.37ng/$m\ell$ at day 150 and 240 after artificial insemination respectively. The LH levels during the pregnancy reached a peak of 27.47$\pm$7.90mIU/$m\ell$ at day 30 after artificial insemination, and thereafter gradually decreased. 6. The progesterone levels during the periparturient period reached a peak of 4.61$\pm$0.34ng/$m\ell$ at day 3 prepartum, and thereafter gradually decreased, and showed 2.05$\pm$0.60ng/$m\ell$ at day 7 postpartum. The estradiol-17$\beta$ levels during the periparturient period showed high level from 207.23$\pm$6.04pg/$m\ell$ at day 1 prepartum to 239.90$\pm$13.90pg/$m\ell$ at day 2 prepartum, and thereafter began to decline and reached 51.87$\pm$1.72pg/$m\ell$ at by 7 postpartum. 7. The prolactin levels during the periparturient period showed relatively higher level at the time of parturition. The LH levels during the periparturient period rnage from 6.32$\pm$0.32mIU/$m\ell$ to 13.90$\pm$1.37mIU/$m\ell$ showing significant changes. 8. The progesterone levels(4.6$\pm$0.8ng/$m\ell$) of the pregnant cows were significantly higher than those (1.84$\pm$1.4ng/$m\ell$) of nonpregnant cows. The cows of artificial insemination from 61 to 90 days after parturition showed higher progesterone levels. 9. During 20 to 25 days after artificial insemination, the accuracy of pregnancy diagnosis from milk progesterone levels were 94.4% for nonpregnant cows(<2.3ng/$m\ell$), and 75.0% for pregnant cows( 3.2ng/$m\ell$). The average overall accuracy of pregnancy prediction for nonpregnant and pregnant cows 83.3% 10. The results obtained this study suggest that the understanding of the endocrinological mechanisms by means of milk hormone analysis during the estrous cycle, pregnancy and parturition would give the basic information needed for increasing efficiency of reproduction. This study would not only provide an accurate method of the early pregnancy diagnosis by milk progesterone levels but also contribute to the research of providing the method of detecting of FSH levels in milk, which was difficult in blood serum.

  • PDF

Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD (전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증)

  • Ju, Young Min;Euh, Seung Hee;Oh, Kwang cheol;Lee, Kang Yol;Lee, Beom Goo;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.200-210
    • /
    • 2015
  • The modeling for fast pyrolysis of biomass in fluidized bed reactor has been developed for accurate prediction of bio-oil and gas products and for yield improvement. The purpose of this study is to analyze and to compare the CFD(Computational Fluid Dynamics) simulation results with the experimental data from the CFD simulation results with the experimental data from the reference(Mellin et al., 2014) for gas products generated during fast pyrolysis of biomass in fluidized bed reactor. CFD(ANSYS FLUENT v.15.0) was used for the simulation. Complex pyrolysis reaction scheme of biomass subcomponents was applied for the simulation of pyrolysis reaction. This pyrolysis reaction scheme was included reaction of cellulose, hemicellulose, lignin in detail, gas products obtained from pyrolysis were mainly $CO_2$, CO, $CH_4$, $H_2$, $C_2H_4$. The deviation between the simulation results from this study and experimental data from the reference was calculated about 3.7%p, 4.6%p, 3.9%p for $CH_4$, $H_2$, $C_2H_4$ respectively, whereas 9.6%p and 6.7%p for $CO_2$ and CO which are relatively high. Through this study, it is possible to predict gas products accurately by using CFD simulation approach. Moreover, this modeling approach should be developed to predict fluidized bed reactor performance and other gas product yields.

Evaluation of the quality of Italian Ryegrass Silages by Near Infrared Spectroscopy (근적외선 분광법을 이용한 이탈리안 라이그라스 사일리지의 품질 평가)

  • Park, Hyung-Soo;Lee, Sang-Hoon;Choi, Ki-Choon;Lim, Young-Chul;Kim, Jong-Gun;Jo, Kyu-Chea;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.301-308
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. This study was carried out to explore the accuracy of near infrared spectroscopy (NIRS) for the prediction of chemical parameters of Italian ryegrass silages. A population of 267 Italian ryegrass silages representing a wide range in chemical parameters and fermentative characteristics was used in this investigation. Samples of silage were scanned at 2 nm intervals over the wavelength range 680~2,500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of the highest coefficients of determination in cross validation ($R^2$) and the lowest standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The $R^2$ and SECV were 0.98 (SECV 1.27%) for moisture, 0.88 (SECV 1.26%) for ADF, 0.84 (SECV 2.0%), 0.93 (SECV 0.96%) for CP and 0.78 (SECV 0.56), 0.81 (SECV 0.31%), 0.88 (SECV 1.26%) and 0.82 (SECV 4.46) for pH, lactic acid, TDN and RFV on a dry matter (%), respectively. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation quality of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

Study on Production Performance of Shale Gas Reservoir using Production Data Analysis (생산자료 분석기법을 이용한 셰일가스정 생산거동 연구)

  • Lee, Sun-Min;Jung, Ji-Hun;Sin, Chang-Hoon;Kwon, Sun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.58-69
    • /
    • 2013
  • This paper presents production data analysis for two production wells located in the shale gas field, Canada, with the proper analysis method according to each production performance characteristics. In the case A production well, the analysis was performed by applying both time and superposition time because the production history has high variation. Firstly, the flow regimes were classified with a log-log plot, and as a result, only the transient flow was appeared. Then the area of simulated reservoir volume (SRV) analyzed based on flowing material balance plot was calculated to 180 acres of time, and 240 acres of superposition time. And the original gas in place (OGIP) also was estimated to 15, 20 Bscf, respectively. However, as the area of SRV was not analyzed with the boundary dominated flow data, it was regarded as the minimum one. Therefore, the production forecasting was conducted according to variation of b exponent and the area of SRV. As a result, estimated ultimate recovery (EUR) increased 1.2 and 1.4 times respectively depending on b exponent, which was 0.5 and 1. In addition, as the area of SRV increased from 240 to 360 acres, EUR increased 1.3 times. In the case B production well, the formation compressibility and permeability depending on the overburden were applied to the analysis of the overpressured reservoir. In comparison of the case that applied geomechanical factors and the case that did not, the area of SRV was increased 1.4 times, OGIP was increased 1.5 times respectively. As a result of analysis, the prediction of future productivity including OGIP and EUR may be quite different depending on the analysis method. Thus, it was found that proper analysis methods, such as pseudo-time, superposition time, geomechanical factors, need to be applied depending on the production data to gain accurate results.