• 제목/요약/키워드: High Volume

검색결과 6,378건 처리시간 0.036초

Volume Change Caused from the Moisture Change in the Limestone Material Pressured under High Temperature (고온을 받은 석회암 골재의 습도경시변화에 따른 체적거동)

  • Feng, Hai-Dong;Son, Ho-Jung;Heo, Young-Sun;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.111-113
    • /
    • 2011
  • This study investigated about how much the limestone's volume was changed as time passed while maintaining a certain level of moisture condition in the limestone material for concrete under high temperature. The result is summarized as follows: It was appeared that the limestone material under high temperature emitted some CO2 resulting from the decarboxylation, so that as the heating temperature was increased, the limestone's length change rate was decreased. In the leave time change after heating the stone, the both conditions of 50% and 100% made the limestone create Ca(OH)2 using some H2O. So it was appeared that as time passed, the limestone's length change rate first increased because of its volume expansion, but the rate was reduced after the limestone material was crumbled.

  • PDF

Tensile Properties of High Mn Austenitic Stainless Steel with Two Phases of Martensite and Austenite (마르텐사이트와 오스테나이트의 2상 조직을 갖는 고 Mn 오스테나이트계 스테인리스강의 인장성질)

  • Kim, Young-Hwa;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.9-13
    • /
    • 2013
  • The tensile properties of high manganese austenitic stainless steel with the two phase structures of deformation-induced martensite and reversed austenite were studied. Reversed austenite with an ultra-fine grain size of less than $0.3{\mu}m$ was obtained by reversion treatment. The two phases structures of deformation-induced martensite and reversed austenite were obtained by an annealing treatment in the range of $500^{\circ}C-700^{\circ}C$ for various times in 70% cold- rolled high-manganese austenitic stainless steel. The volume fraction of the reversed austenite increased rapidly with increases in the annealing temperature and time. In the stainless steel with the two phases of austenite and martensite, the strength decreased rapidly, while the elongation increased slowly and then rapidly increased with an increase in the volume fraction of the reversed austenite. Therefore, the strength and elongation were strongly controlled by the volume fraction of reversed austenite. A good combination of high strength and elongation could be obtained by the mixed structure of reversed austenite and deformation-induced martensite.

An Experimental Study on Hydration Heat and Strength Properties Concrete with High Volume Fly-Ash (플라이애시 콘크리트의 수화발열 특성과 압축강도 특성에 관한 실험적 연구)

  • 김우상;김광기;백민수;김우재;정재영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.67-71
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash at the same time was used. It was used that the adiabatic temperature rise of concrete about the mass member which bad been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive streneth's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the tine to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

  • PDF

Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Kim, You-Chan;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.391-401
    • /
    • 2017
  • In this study, the effects of water-to-binder (W/B) ratio and replacement ratio of blast furnace slag (BFS) on the compressive strength of concrete were first investigated to determine an optimized mixture. Then, using the optimized high-strength concrete (HSC) mixture, hooked steel fibers with various aspect ratios and volume fractions were used as additives and the resulting mechanical properties under compression and flexure were evaluated. Test results indicated that replacement ratios of BFS from 50 to 60% were optimal in maximizing the compressive strength of steam-cured HSCs with various W/B ratios. The use of hooked steel fibers with the aspect ratio of 80 led to better mechanical performance under both compression and flexure than those with the aspect ratio of 65. By increasing the fiber aspect ratio from 65 to 80, the hooked steel fiber volume content could be reduced by 0.25% without any significant deterioration of energy absorption capacity. Lastly, complete material models of steel-fiber-reinforced HSCs were proposed for structural design from Lee's model and the RILEM TC 162-TDF recommendations.

A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • 제3권3호
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

Wear Characteristics of Particulate Reinforced Metal Matrix Composites Fabricated by Pressureless Metal Infiltration Process (무가압함침법으로 제조된 입자강화 금속복합재료의 마모특성)

  • Kim, Jae-Dong;Jung, Sun-Uk;Kim, Hyung-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.379-384
    • /
    • 2002
  • The effect of size and volume fraction of ceramic particles with sliding velocity on the wear properties were investigated for the metal matrix composites fabricated by pressureless infiltration process. The particulate metal matrix composites exhibited about 5.5 - 6 times of excellent wear resistance compared with AC8A alloy at high sliding velocity, and as increasing the particle size and decreasing the volume fraction the wear resistance was improved. The wear resistance of metal matrix composites and AC8A alloy exhibited different aspects. Wear loss of AC8A alloy increased with sliding velocity linearly. whereas metal matrix composites indicated more wear loss than AC8A alloy at slow velocity region, however a transition point of wear loss was found at middle velocity region which show the minimum wear loss, and wear loss at high velocity region exhibited nearly same value with slow velocity region. In terms of wear mechanism, the metal matrix composites exhibited the abrasive wear at slow to high sliding velocity generally, however AC8A alloy showed abrasive wear at low sliding velocity and adhesive and melt wear at high sliding velocity.

  • PDF

Cascaded Volume Bragg Grating for Narrow Spectral Linewidth in High-power Laser Diodes

  • Lee, Dong-Jin;Shim, Gyu-Beom;Jeong, Ji-Hun;O, Beom-Hoan
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.282-287
    • /
    • 2022
  • Narrowing the spectral linewidth and improving the wavelength stability of high-power laser diodes (HPLDs) are both in high demand for rapidly maturing industrial laser applications. In this study, we investigate the spectral behavior of a commercial HPLD bar module composed of 19 laser diodes (LDs) in a single-layered bar with a built-in volume Bragg grating (VBG) and an additional cascaded VBG. Optical loss due to the extra cascaded VBG is kept below 5% when the optical output is 5 W or more. The full width at half maximum of the Fabry-Perot peak from the cascaded VBG is reduced to about 12.4% and 29.1% at the edge (1st LD) and center (10th LD) of the HPLD bar module respectively, compared to using only a built-in VBG at an optical power of 10 W or more. In addition, fine wavelength tuning is achieved by temperature control of the extra VBG, and the obtained wavelength-tuning range amounts to about 10.6 pm/K.

ASPPMVSNet: A high-receptive-field multiview stereo network for dense three-dimensional reconstruction

  • Saleh Saeed;Sungjun Lee;Yongju Cho;Unsang Park
    • ETRI Journal
    • /
    • 제44권6호
    • /
    • pp.1034-1046
    • /
    • 2022
  • The learning-based multiview stereo (MVS) methods for three-dimensional (3D) reconstruction generally use 3D volumes for depth inference. The quality of the reconstructed depth maps and the corresponding point clouds is directly influenced by the spatial resolution of the 3D volume. Consequently, these methods produce point clouds with sparse local regions because of the lack of the memory required to encode a high volume of information. Here, we apply the atrous spatial pyramid pooling (ASPP) module in MVS methods to obtain dense feature maps with multiscale, long-range, contextual information using high receptive fields. For a given 3D volume with the same spatial resolution as that in the MVS methods, the dense feature maps from the ASPP module encoded with superior information can produce dense point clouds without a high memory footprint. Furthermore, we propose a 3D loss for training the MVS networks, which improves the predicted depth values by 24.44%. The ASPP module provides state-of-the-art qualitative results by constructing relatively dense point clouds, which improves the DTU MVS dataset benchmarks by 2.25% compared with those achieved in the previous MVS methods.

The Change in Readmission Rate, Length of Stay and Hospital Charge after Performance Reporting of Hip Hemiarthroplasty (고관절 부분 치환술 시술정보 공개에 따른 재입원율, 입원일수 및 진료비의 변화)

  • Jang, Won-Mo;Eun, Sang-Jun;SaGong, Pil-Young;Lee, Chae-Eun;Oh, Moo-Kyung;Oh, Ju-Hwan;Kim, Yoon
    • Journal of Preventive Medicine and Public Health
    • /
    • 제43권6호
    • /
    • pp.523-534
    • /
    • 2010
  • Objectives: We assessed impact of performance reporting information about the readmission rate, length of stay and cost of hip hemiarthroplasty. Methods: The data are from a nationwide claims database, National Quality Improvement Project database, of Health Insurance Review & Assessment Service in Korea. From January 2006 to April 2008, we received information of length of stay, readmission within 30 days, cost of 22 851 hip hemiarthroplasty episodes. Each episodes has retained the diagnoses of comorbidities and demographics. We used time-series analysis to assess the shifting of patients selections, between high volume (over 16 operations in a year) and low volume institutions, after performance reporting (December 2007). The changes of quality (readmission, length of stay) and cost were evaluated by multilevel analysis with adjustment of patient's factors and institutional factors after performance reporting. Results: As compared with the before performance reporting, the proportion of patients who choose the high volume institution, increased 3.45% and the trends continued 4 months at marginal significance (p = 0.059). After performance reporting, national average readmission rate, length of stay were decreased by 0.49 OR (95% CI=0.25 - 0.95) and 10% (${\beta}$=-0.102, p<0.01) and cost was not changed (${\beta}$=-0.01, p=0.27). The high volume institutions were more decreased than low volume in length of stay. Conclusions: After performance reporting, readmission rate, length of stay were decreased and the patient selections were marginally shifted from low volume institutions to high volume institutions.

Comparative Study of Tritium Analysis Method with High-Volume Counting Vial

  • Yoon, Yoon Yeol;Kim, Yongcheol
    • Journal of Radiation Protection and Research
    • /
    • 제45권3호
    • /
    • pp.142-146
    • /
    • 2020
  • Background: Tritium (3H) analysis in groundwater was difficult because of its low activity. Therefore, the electrolytic enrichment method was used. To improve the detection limit and for performing simple analysis, a high-volume counting vial with the available liquid scintillation counter (LSC) was investigated. Further, it was compared with a conventional 20-mL counting vial. Materials and Methods: The LSC with the electrolytic enrichment method was used 3H analysis in groundwater. A high-volume 145-mL counting vial was compared with a conventional 20-mL counting vial to determine the counting characteristics of different LSCs. Results and Discussion: When a Quantulus LSC was used, the counting window between channels 35 and 250 was used. The background count was approximately 1.86 cpm, and the counting efficiency increased from 8% to 40% depending on the mixing ratio of the volume of sample and cocktail solution. For LSC-LB7, the optimum counting window was between 1 and 4.9 keV, which was selected by the factory (Hitachi Aloka Medical Ltd., Japan) by considering quenching using a standard external gamma source. The background count of LSC-LB7 was approximately 3.60 ± 0.29 cpm when the 145-mL vial was used and 2.22 ± 0.17 cpm when the 20-mL vial was used. The minimum detectable activity (MDA) of the 20-mL vial was greater for LSC-LB7 than for Quantulus. The MDA with the 145-mL vial was improved to 0.3 Bq/L when compared with the value of 1.6 Bq/L for the 20-mL vial. Conclusion: The counting efficiency when using the 145-mL vial was 27%, whereas it was 18% when using the 20-mL vial. This difference can be attributed to the vial volume. The figure of merit (FOM) of the 145-mL vial was four times greater than that of the 20-mL vial because the volume of the former vial is approximately seven times greater than that of the latter. Further, the MDA for 3H decreased from 1.6 to 0.3 Bq/L. The counting efficiency and FOM of LSC-LB7 was slightly less than those of Quantulus when the 20-mL vial was used. The background counting rate of the Quantulus was lower than that of the LSC-LB7.