• Title/Summary/Keyword: High Velocity

Search Result 5,001, Processing Time 0.03 seconds

Electrohydrodynamic Characteristics of AC Corona Discharge for the Frequency (교류 코로나 방전시 주파수 변화에 따른 전기유체역학적 특성)

  • Jung, Jae-Seung;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.87-92
    • /
    • 2012
  • In this paper, EHD(electrohydrodynamics) characteristics of AC corona discharge for the various frequency was investigated. Ionic wind velocity is controlled by the frequency of applied ac high voltage, and maximum velocity of the ionic wind is obtained at 1.2kHz. Maximum velocity are 1.90 m/s by metal corona electrode and 2.72m/s by wet porous corona electrode, These attain 91~99% of the maximum velocity in the DC corona discharge by adjusting the frequency through the experiments. In this paper, wet porous corona electrode has high possibility of cooling methode because a AC corona discharge using wet porous corona electrode is able to eject more water droplets than DC corona discharge.

A Dual PID Controller for High-Accuracy Positioning of Ink Jet Printer Media Advance System (잉크젯 프린터 용지 이송 장치의 정밀 위치 제어를 위한 이중 PID 제어기의 설계)

  • 조영완
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.317-324
    • /
    • 2004
  • The ink jet printer media advance system is required to be exactly driven to the target position via tracking the reference velocity profile to obtain the high quality print image. A single gain PID controller is not sufficient to fulfill the control objectives, the exact velocity tracking and the accurate positioning, at the same time. A dual PID controller and its switching strategy are presented in this paper to achieve the control objectives. The media advance system is controlled by two separate PID controllers, one of which is for velocity control, and the other is for position control. A PID controller controls the velocity of the media advance system until it reaches the predetermined switching position. When the media advance system passes the predetermined position, the controller is switched to the other PID controller which is more profitable for exact positioning. The switching position is determined by the estimated stop distance. The simulation and experimental results are presented to show the validity and effectiveness of the proposed controller.

Numerical and theoretical modelling of low velocity impact on UHPC panels

  • Prem, Prabhat R.;Verma, Mohit;Ramachandra Murthy, A.;Rajasankar, J.;Bharatkumar, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.207-215
    • /
    • 2017
  • The paper presents the studies carried out on low velocity impact of Ultra high performance concrete (UHPC) panels of size $350{\times}350{\times}10mm^3$ and $350{\times}350{\times}15mm^3$. The panels are cast with 2 and 2.5% micro steel fibre and compared with UHPC without fiber. The panels are subjected to low velocity impact, by a drop-weight hemispherical impactor, at three different energy levels of 10, 15 and 20 J. The impact force obtained from the experiments are compared with numerically obtained results using finite element method, theoretically by energy balance approach and empirically by nonlinear multi-genetic programming. The predictions by these models are found to be in good coherence with the experimental results.

The experimental investigation for penetration depth and shape of aluminum alloy plates by 5.56mm ball projectile with striking velocities between 350 and 750㎧ (고속충격시 볼탄에 의한 알루미늄 합금의 관통 깊이와 형상에 관한 실험적 연구)

  • 손세원;김희재;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.800-803
    • /
    • 2002
  • This investigation describes and analyses the experimental results proper to the penetration of Al5052-H34 alloy plates of thickness 6, 12 and 16mm(T/D=1, 2, 3) by 5.56mm ball projectiles over the velocity range 350-750㎧. All the high velocity impact tests were carried out at normal impact angle, i.e. zero obliquity. The experimental results presented the variation of depth of penetration, bulge height and diameter, plugged length and diameter with the velocity fur tests on each plate of a given thickness in order to determine the deformation shapes of 5.56mm ball projectiles and targets. Also the protection ballistic limit($V_50$) tests were conducted.

  • PDF

Dynamic PIV Measurement of Swirl Flow in a PC Fan

  • ARAMAKI Shinichiro;HAYAMI Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.41-45
    • /
    • 2004
  • The dynamic particle image velocimetry (PIV) is consisted of a high frequency pulse laser, high speed cameras and a timing controller. The three velocity components of flow downstream of an axial flow fan for PC cooling system are measured using the dynamic PIV system. An Axial flow fan has seven blades of 72 mm in diameter. The rotating speed is 1800 rpm. The downstream flow is visualized by smoke particles of about $0.3-1\;{\mu}m$ in diameter. The three-dimensional instantaneous velocity fields are measured at three downstream planes. The swirl velocity component was diffused downstream and the change in time-mean vorticity distribution downstream was also discussed. The spatio-temporal change in axial velocity component with the blades passing is recognized by the instantaneous vector maps. And the dynamic behavior of vorticity moving with the rotating blades is discussed using the unsteady vorticity maps.

  • PDF

Spray Characteristics of High-Pressure Injector in Direct-Injection Gasoline Engine (직분식 가솔린 기관 고압 인젝터의 연료 무화 특성)

  • 이창식;최수천;김민규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.1-6
    • /
    • 1999
  • An experimental study was carried out to investigate the global spray behavior and spray characteristics of high-pressure fuel injector in the direct-injection goasoline enginet. The atomization characteristics of fuel spary such as mean droplet size, mean velocity , and velocity distribution were measured by the phase Doppler particle analyzer. The spray tip penetration and spray width were investigated by the result fo visualizaiton experiment. The quantitiative spary characteristics of injector spray were measured under various sparay conditions and ambient pressures. The results of experiment show that the increase in ambient pressure have influence on the spray tip penetration and spray development process. Also, the influence of injection pressure and measuring location on the mean velocity and droplet size distribution were discussed.

  • PDF

HI 21 CM EMISSION LINE STUDY OF SOUTHERN GALACTIC SUPERNOVA REMNANTS

  • KOO BON-CHUL;KANG JI-HYUN;MCCLURE-GRIFFITHS N. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.61-77
    • /
    • 2004
  • We have searched for HI 21 cm line emission from shocked atomic gas associated with southern supernova remnants (SNRs) using data from the Southern Galactic Plane Survey. Among the 97 sources studied, we have detected 10 SNRs with high-velocity HI emission confined to the SNR. The large velocity and the spatial confinement suggest that the emission is likely from the gas accelerated by the SN blast wave. We also detected 22 SNRs which show HI emission significantly brighter than the surrounding regions over a wide ($>10 km\;s^{-1}$) velocity interval. The association with these SNRs is less certain. We present the parameters and maps of the excess emission in these SNRs. We discuss in some detail the ten individual SNRs with associated high-velocity HI emission.

Developemet of noncontact velocity tracking algorithm for 3-dimensional high speed flows using digital image processing technique (디지털 화상처리를 이용한 유동장의 비접촉 3차원 고속류 계측법의 개발)

  • 도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.259-269
    • /
    • 1999
  • A new algorithm for measuring 3-D velocity components of high speed flows were developed using a digital image processing technique. The measuring system consists of three CCD cameras an optical instrument called AOM a digital image grabber and a host computer. The images of mov-ing particles arranged spatially on a rotation plate are taken by two or three CCD cameras and are recorderd onto the image grabber or a video tape recoder. The three-dimensionl velocity com-ponents of the particles are automatically obtained by the developed algorithm In order to verify the validity of this technique three-dimensional velocity data sets obtained from a computer simu-lation of a backward facing step flow were used as test data for the algorithm. an uncertainty analysis associated with the present algorithm is systematically evaluated, The present technique is proved to be used as a tookl for the measurement of unsteady three-dimensional fluid flows.

  • PDF

Delineation of Groundwater and Estimation of Seepage Velocity Using High-Resolution Distributed Fiber-Optic Sensor

  • Chang, Ki-Tae;Pham, Quy-Ngoc
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.39-43
    • /
    • 2015
  • This study extends the Distributed Temperature Sensing (DTS) application to delineate the saturated zones in shallow sediment and evaluate the groundwater flow in both downward and upward directions. Dry, partially and fully saturated zones and water level in the subsurface can be recognized from this study. High resolution seepage velocity in vertical direction was estimated from the temperature data in the fully saturated zone. By a single profile, water level can be detected and seepage velocity in saturated zone can be estimated. Furthermore, thermal gradient analysis serves as a new technique to verify unsaturated and saturated zones in the subsurface. The vertical seepage velocity distribution in the recognized saturated zone is then analyzed with improvement of Bredehoeft and Papaopulos' model. This new approach provides promising potential in real-time monitoring of groundwater movement.

Effects of High-heeled Shoe with Different Height on the Balance during Standing and Walking (하이힐 높이에 따른 균형성)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.479-486
    • /
    • 2010
  • The purpose of this study was to determine the effects of high-heeled shoe on the quiet standing and gait balance. Twenty women (mean height: $161.6{\pm}3.3\;cm$, mean body mass: $53.8{\pm}6.3\;kg$, mean age: $23.8{\pm}2.7$ yrs..) who were without history or complain of lower limb pain took part in this study. They were asked to stand quietly on a force platform for 30 sec and walk on it at their preferred walking speed (mean speed $3.14{\pm}0.5\;km/hr$.) with wearing three different high-heeled shoe, 3, 7, 9 cm high for collecting data. Data were randomly recorded to collect two trials for quiet standing and five trials for walking The parameters to have been analyzed for comparison between three conditions of the height of high-heeled shoe were COP(Center of Pressure) range, COP velocity, sway area, and free moment on the static balance and COP range, COP velocity, and free moment on the dynamic balance. In this study, high-heel height affected on the COP range and velocity in the ante-posterior direction during walking, dynamic balance, but didn't affect on the quiet standing, static balance.