• Title/Summary/Keyword: High Thermal Environment

Search Result 944, Processing Time 0.024 seconds

A Study on Air Temperature Reduction Effect and the Functional Improvement of Street Green Areas in Seoul, Korea (서울 도심 가로수 및 가로녹지의 기온 저감 효과와 기능 향상 연구)

  • Jung, Hee-Eun;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.37-49
    • /
    • 2015
  • The goal of this research is to examine air temperature changes according to tree type, plantation type, roadside green area structure, and green volume of street green area within a city. The plantation type that could be analyzed for comparison by tree type with over 3 species was 1 rows of tree+shrubs. The results of analysis of average air temperature difference between pedestrian and car streets vis-a-vis 1 row of tree+shrub in high air temperature areas were: Pinus densiflora, $1.35^{\circ}C$; Zelkova serrata, $1.84^{\circ}C$; Ginkgo biloba, $2.00^{\circ}C$; Platanus occidentalis, $2.57^{\circ}C$. This standard large wide canopy species was analyzed by the roadside to provide shade to have a significant impact on air temperature reduction. In terms of analysis of the relationship between plantation type of roadside trees and air temperature, the average air temperature difference for 1 row of tree type was $1.80^{\circ}C$; for 2 rows of trees it was $2.15^{\circ}C$. In terms of analysis of the relationship between the roadside green area structure and air temperature, for tree type, average air temperature $1.94^{\circ}C$: for tree+shrub type, average air temperature $2.49^{\circ}C$; for tree+mid-size tree+shrub type, average air temperature $2.57^{\circ}C$. That is, air temperature reduction was more effective in a multi-layer structure than a single layer structure. In the relationship analysis of green volume and air temperature reduction, the air temperature reduction effect was enlarged as there was a large amount of green volume. There was a relationship with the green volume of the road, the size of the tree and number of tree layers and a multi-layer structured form of planting. The canopy volume was large and there were a great number of rows of the tree layer and the plantation type of multi-layer structure, which is what is meant through a relationship with the green volume along the roadside. Green composition standards for air temperature reduction effects and functional improvement were proposed based on the result. For a pedestrian street width of 3m or less in the field being ideal, deciduous broadleaf trees in which the canopy volume is small and the structure of the tree+shrub type through the greatest 1m green bend were proposed. For a pedestrian street width of over 3m, deciduous broadleaf trees in which the canopy volume is large and is multi-layer planted with green bend over 1m, tree+mid-size tree+shrub type was proposed.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

Life-time Prediction of a FKM O-ring using Intermittent Compression Stress Relaxation (CSR) and Time-temperature Superposition (TTS) Principle (간헐 압축응력 완화와 시간-온도 중첩 원리를 이용한 FKM 오링의 수명 예측 연구)

  • Lee, Jin-Hyok;Bae, Jong-Woo;Kim, Jung-Su;Hwang, Tae-Jun;Park, Sung-Doo;Park, Sung-Han;Min, Yeo-Tae;Kim, Won-Ho;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • Intermittent CSR testing was used to investigate the degradation of an FKM O-ring, also the prediction of its life-time. An intermittent CSR jig was designed taking into consideration the O-ring's environment under use. The testing allowed observation of the effects of friction, heat loss, and stress relaxation by the Mullins effect. Degradation of O-rings by thermal aging was observed between 60 and $160^{\circ}C$. In the high temperature of range ($100-160^{\circ}C$) O-rings showed linear degradation behavior and satisfied the Arrhenius relationship. The activation energy was about 60.2 kJ/mol. From Arrhenius plots, predicted life-times were 43.3 years and 69.9 years for 50% and 40% failure conditions, respectively. Based on TTS (time-temperature superposition) principle, degradation was observed at $60^{\circ}C$, and could save testing time. Between 60 and $100^{\circ}C$ the activation energy decreased to 48.3 kJ/mol. WLF(William-Landel-Ferry) plot confirmed that O-rings show non-linear degradation behavior under $80^{\circ}C$. The life-time of O-rings predicted by TTS principle was 19.1 years and 25.2 years for each failure condition. The life-time predicted by TTS principle is more conservative than that from the Arrhenius relationship.

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.