• Title/Summary/Keyword: High Tension Bolt

Search Result 73, Processing Time 0.027 seconds

The Joining Quality of High Strength Bolt, Nut and Washer Set (A490) in the Extreme Conditions (극한 상태에서 A490 고장력 볼트 세트의 체결 품질 연구)

  • Suk, Han-Gil;Cho, In-Seup;Hong, Hyeon-Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.21-25
    • /
    • 2011
  • This test focuses on the correlation between the lubrication, ductility and strength through the change of nut lubricant which decides joining angle for A490 bolt sets required in the AASHTO (American Association of State Highway & Transportation Officials). Because the lubrication of high tension bolt, nut, washer sets becomes an important factor to ductility and joining load, the quality improvement is required for improving reliability and securing enough lubrication of maker and user. This study examines the quality characteristics required in the specification through tests because only this standard specifies joining quality in the extreme conditions (as much about two times of the joining angle on site as normal condition). Moreover, this study is limited to the test on joining axial force required in the AASHTO for the three nut lubrication conditions of A490 bolt set. It is concluded that the nuts should be coated or waxed enough for the improvement of the joining axial force and ductility of bolts required in the standards. It is shown that in the case of plain high tension bolt sets, a rust preventing lubricative oil shall be applied and the torque coefficient value for A490 bolt sets should be maintained below 0.175.

A Comparison Study for the Fatigue Behavior of H/T and T/S Bolt Friction Joint (H/T 와 T/S 볼트 마찰이음의 피로거동 비교·검토)

  • JUN, Je Sang;WOO, Sang Ik;LEE, Seong Heang;JUNG, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.139-150
    • /
    • 1996
  • H/T(High Tension) bolt is generally being used in joining the members of steel structure. It has some difficulties in management such as an adequate fastening force and a selection of proper instrument for fastening. T/S(Torque Shear Type High Tension) bolt which is more convenient and easier than H/T bolt in quality control has recently been developed. T/S bolts are produced and widely used these days in domestic, but those have not a detail regulation for their on. Those are only being used according to the specification for the H/T bolts. In this study, we tried to confirm the soundness of T/S bolts by the fatigue test of the modified specimens. First, we measured the reduction rate of the initial axial force with time at bolts. Second, we investigated the slip forces of bolts when the test specimen is loaded in tension. Third, we implemented the fatigue tests. During the test, we measured the variation of the axial forces of bolts under the cyclic loading. Finally, we compared and analyzed the fatigue behavior of H/T and T/S bolt, by S-N curve diagrams that are obtained in this study.

  • PDF

A Study on the Change of Load Carrying Capacity of High-tension Bolt Joints by Critical Sections (단면결손에 따른 고장력볼트 체결부의 내하력 변화에 관한 연구)

  • Park, Jeong-Ung;Yang, Seung-Hyun;Jang, Seok-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2402-2408
    • /
    • 2009
  • This study conducted a static tensile test in order to prevent the lowering of load carrying capacity caused by critical sections made by over bolt holes in the base plate and the cover plate of steel member joints using high-tension bolts. The change of the load carrying capacity of joints was examined by comparison of the maximum load on joint fracture obtained from the tensile test with critical section rate and design strength. According to the results, the rate of decrease in strength was higher when the critical section rate was high, and in particular, decrease in strength was affected much more by critical sections in the base plate than by those in the cover plate. In high-tension bolt joints using over bolt holes for the base plate and the cover plate, load carrying performance was somewhat lower than that in joints using standard bolt holes, but the maximum tensile strength on facture was over 15% higher than design fracture strength. According to the results of this study, the use of over bolt holes in high-tension bolt joints had an insignificant effect on the lowering of load carrying capacity, so the allowance of over bolt holes in the joints of steel members is expected to enhance to the economy and efficiency of the works.

Ultimate Behavior of High-Tension Bolted Joints Considering Plate Thickness and Bolt Size (판 두께와 볼트 크기를 고려한 고장력 볼트 이음부의 극한 거동)

  • Kim, Sung-Bo;Choi, Jong-Kyoung;Heo, In-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.515-524
    • /
    • 2008
  • The ultimate behavior of high-tension bolted joints with various plate thickness and bolt size is investigated using nonlinear F.E. analysis and experimental study. The relation with sliding load, bolt deformation, and failure modes are presented based on plate thickness and bolt size. Three kinds of the bolt diameter(M20, M22, M24) and five types of the steel plates (l2mm, 16mm, 20mm, 30mm, 40mm) are considered for the ultimate behavior of the bolted joints. The numerical model, constructed by commercial F.E. program, ABAQUS, of ultimate behavior of bolted joints is introduced and verified by experimental results. The force-displacement and force-axial strain relations are measured and compared with the results by 3D finite element analysis.

3D Finite Element Analysis of High Tension Bolted Joints (고장력 볼트 이음부의 3차원 유한요소 해석)

  • Shim, Jae Soo;Kim, Chun Ho;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.407-414
    • /
    • 2004
  • Bridges in common use are expected to have more varieties of load in their connected members and bolts than in construction. Faults in connection members or bolts occur so often according to the time flow. One of the purposes of this study is to find out the behavior and structural features of high-tension bolted joints with faults that are very difficult and cost much to find out through experimentation with finite element analysis. Another purpose of this study is to provide sufficient data, estimated experimental results, and the scheme of the test plate for an economical experimental study in the future. Surveys of bridges with a variety of faults and statistical classifications of their faults were performed, as was a finite element analysis of the internal stress and the sliding behavior of standard and defective bridge models. The finite element analysis of the internal stress was performed according to the interval of the bolt, the thickness of the plate, the distance of the edge, the diameter of the bolt, and the expansion of the construction. Furthermore, the analysis explained the sliding behavior of high-tension bolt joints and showed the geometric non-linear against the large deformation, and the boundary non-linear against the non-linear in the contact surface, including the material non-linear, to best explain the exceeding of the yield stress by sliding. A normally bolted high-tension bolt joint and deduction of bolt tension were also analyzed with the finite element analysis of bridge-sliding behavior.

Slip Behavior of High-Tension Bolted Joints Subjected to Compression Force (압축력을 받는 고장력 볼트 이음부의 미끄러짐 거동)

  • Han, Jin Hee;Choi, Jong Kyoung;Heo, In Sung;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • In this study, the slip behavior of high-tension bolted joints subjected to compression force is investigated through 3D finite element analysis and experiments. The relation with sliding load, bolt deformation, and failure load are studied with the metal thickness affecting the bolted joint. The post-sliding behavior considering bolt stiffness is presented and compared with the results by finite element and experiments. The finite element model is constructed by solid elements in ABAQUS, in consideration of all the friction effects between metal plates and bolts. The stress-strain relations in the literature are used, and the sliding displacements and axial stresses around the bolt connection are investigated. The flexural buckling of species happened when the plate thickness is less than the bolt diameter. However, the shear failures of bolt occurred in the opposite case.

Study on the Profile of Nut Bearing Surface and the Torque Coefficient of a High Strength Bolt Set (고장력 볼트세트의 자리면형상과 토크계수에 관한 연구)

  • Lee, Baek Joon;Sohn, Seung Yo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.143-150
    • /
    • 2000
  • Depending upon the combination of tolerances specified in the standards on bolt, nut and washer for high tension bolt sets, there arises center-to-center deviation between bolt and washer. This deviation nay cause loss of effective contact area between nut- and washer-faces, which leads to some dispersion of the torque coefficient K. By adapting circular arc surface instead of flat surface for the nut, it is shown through numerical analyses that the dispersion of the torque coefficient can be minimized. In this way, optimum radius of curvature of the nut bearing surface is proposed.

  • PDF

Evaluation on Clamping force of High Strength Bolts By Temperature Parameter (온도변수에 따른 고력볼트 체결력 평가)

  • Nah, Hwan Seon;Lee, Hyeon Ju;Kim, Kang Seok;Kim, Jin Ho;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.399-407
    • /
    • 2008
  • The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on temperature variables despite the break of the pin tail. In this study, the tension of torque shear bolts were compared with two types of high-strength hexagon bolts by temperature parameters from ${-10^{\circ}C}$ to ${50^{\circ}C}$. Torque shear bolts showed that the average clamping force increased to 20kN as the temperature increased. In case of galvanized high-strength hexagon bolts, the average clamping forces at $0^{\circ}C$, $20^{\circ}C$, $50^{\circ}C$ were recorded over standard bolt tension, 178kN, and the worst standard deviation was 50kN. In case of high-strength hexagon bolts, ave rage clamping forces increased as the temperature went up, and the worst standard deviation was 33kN lower than that of galvanized high-strength hexagon bolts. As for the turn-of-the-nut method, at nut rotation of ${90^{\circ}}$, two types of high-strength hexagon bolts did not met the intended design bolt in tension, 162kN.it is neccessary to re-evaluate the range of turn of nut, ${120^{\circ}{\pm}30^{\circ}}$.

Estimation on clamping load of high strength bolts considering various environment conditions

  • Nah, Hwan-Seon;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Of high strength bolts, the torque shear type bolt is known to be clamped normally when pin-tails are broken. Sometimes the clamping loads on slip critical connections considerably fluctuate from the required tension due to variation of torque coefficient. This is why the viscosity of lubricant affects the torque coefficient by temperature. In this study, the clamping tests of high strength bolts were performed independently at laboratory conditions and at outdoor environment. The temperatures of outdoor environment candidates were ranged from $-11^{\circ}C$ to $34^{\circ}C$ for six years. The temperature at laboratory condition was composed from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. At outdoor environment conditions, the clamping load of high strength bolt was varied from 159 to 210 kN and the torque value was varied from 405 to 556 Nm. The torque coefficients at outdoor environment were calculated from 0.126 to 0.158 when tensions were measured from 179 to 192 kN by using tension meter. The torque coefficients at outdoor environment conditions were analyzed as the range from 0.118 to 0.152. From these tests, the diverse equations of torque coefficient, tension dependent to temperature can be acquired by statistic regressive analysis. The variable of torque coefficient at laboratory conditions is 0.13% per each $1^{\circ}C$ when it reaches 2.73% per each $1^{\circ}C$ at outdoor environment conditions. When the results at laboratory conditions and at outdoor environment were combined to get the revised equations, the change in torque coefficient was modified as 0.2% per each $1^{\circ}C$ and the increment of tension was adjusted as 1.89 % per each $1^{\circ}C$.

Experimental Study on Tensile Fatigue Strength of the High Strength Bolts (고장력볼트의 인장피로강도에 관한 실험적 연구)

  • Han, Jong Wook;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.165-170
    • /
    • 2008
  • New high strength bolts are required due to the development of the high strength steel, the ultra-thick steel plates, and the long-span bridge, though high strength bolts with tensile strength of 1,000 MPa are mainly used in construction site of every country. The high strength bolts are often subjected to a repeated tension-type of loading in which the fatigue failure is a major mode of failure. However, the theoretical and experimental study for the fatigue failure of tension bolt has not been well established in Korea. In this study, we performed a tensile fatigue test of F8T, F10T and F13T, F13T-N high strength bolts under tension. We proposed three fatigue strength specifications by performing 95% survival probability analysis for F8T, F10T, F13T, and F13T-N bolt under the $2{\times}10^6$ cycles of repeated loading. And the fatigue strength for the advanced screw thread shape bolt developed in this study are compared with the previous KS screw thread shape bolt.