• 제목/요약/키워드: High Temperature Oxidation

Search Result 1,130, Processing Time 0.028 seconds

Development of a Metal Cladding with Protective SiC Composites and the Characteristics on High temperature Oxidation (SiC 복합체 보호막 금속 피복관의 개발 및 고온산화 특성 분석)

  • Noh, Seonho;Lee, Dong-hee;Park, Kwangheon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.218-226
    • /
    • 2015
  • The goal of this study is to investigate a metal cladding that contains SiC composites as a protective layer and analysis the characteristics of the specimens on high temperature oxidation To make SiC composites, the current process needs a high temperature (about $1100^{\circ}C$) for the infiltration of fixing materials such as SiC. To improve this situation, we need a low temperature process. In this study, we developed a low temperature process for making SiC composites on the metal layer, and we have made two kinds: cladding with protective SiC composites made by polycarbosilane(PCS), and a PCS filling method using supercritical carbon dioxide. A corrosion test at $1200^{\circ}C$ in a mixed steam and Ar atmosphere was performed on these specimens. The result show that the cladding with protective SiC composites have excellent oxidation suprression rates. This study can be said to have developed new metal cladding with enhanced durability by using SiC composite as protective films of metal cladding instead of simple coating film.

Corrosion and Oxidation Behaviors of ion-nitrided tool Steels (이온질화된 공구강 표면의 산화 및 공식거동)

  • Choe Han-Cheol;Lee Ho-Jong;Jeong Yong-Woon
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.126-135
    • /
    • 2005
  • SKD 11 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness and creep strength as well as excellent oxidation resistance. The ion nitrided tool steel containing Mo results in improvement of corrosion resistance, strength at high temperature and pitting resistance, especially in $Cl^-$ contained environment. But the Mo addition causes a disadvantage such as lower oxidation resistance at elevated temperature. In this study, several effects of ion-disadvantage on the oxidation characteristics for SKD 11 steel with various oxidation temperature were investigated. SKD 11 steels were manufactured by using vacuum furnace and solutionized for 1 hr at $1,050^{\circ}C$. Steel surface was ion nitrided at $500^{\circ}C$ for 1 hr and 5 hr by ion nitriding equipment. ion nitrided specimen were investigated by SEM, OM and hardness tester. Oxidation was carried out by using muffle furnace in air at $500^{\circ}C,\;700^{\circ}C\;and\;900^{\circ}C$ for 1hr, respectively. Oxidation behavior of the ion nitrided specimen was investigated by SEM, EDX and surface roughness tester. The conclusions of this study are as follows: It was found that plasma nitriding for 5 hr at $500^{\circ}C$, compared with ion nitriding for 1 hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear, corrosion resistance and hardness as nitriding time increased. Nitrided SKD 11 alloy for 1hr showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with nitrided SKD 11 alloy for 5 hr. The oxidation surface at $900^{\circ}C$ showed a good corrosion resistance.

Hydrogen Plasma와 Oxygen Plasma를 이용한 50 nm 텅스텐 패턴의 Oxidation 및 Reduction에 관한 연구

  • Kim, Jong-Gyu;Jo, Seong-Il;Nam, Seok-U;Min, Gyeong-Seok;Kim, Chan-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.288-288
    • /
    • 2012
  • The oxidation characteristics of tungsten line pattern during the carbon-based mask layer removal process using oxygen plasmas and the reduction characteristics of the WOx layer formed on the tungsten line surface using hydrogen plasmas have been investigated for sub-50 nm patterning processes. The surface oxidation of tungsten line during the mask layer removal process could be minimized by using a low temperature ($300^{\circ}K$) plasma processing instead of a high temperature plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WOx on the tungsten line could be decreased to 25% of WOx formed by the high temperature processing. The WOx layer could be also completely removed at the low temperature of $300^{\circ}K$ using a hydrogen plasma by supplying bias power to the tungsten substrate to provide an activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40 nm-CD device processing, the complete removal of WOx formed on the sidewall of tungsten line could be observed.

  • PDF

Oxidation of Chloroethenes by Heat-Activated Persulfate (과황산의 열적활성화 및 염소계용제의 산화분해)

  • Zhang, Hailong;Kwon, Hee-Won;Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1201-1208
    • /
    • 2017
  • Oxidative degradation of chlorinated ethenes was carried out using heat-activated persulfate. The activation rate of persulfate was dependent on the temperature and the activation reaction rate could be explained based on the Arrhenius equation. The activation energy of persulfate was 19.3 kcal/mol under the assumption that the reaction between the sulfate radical and tricholoroethene (TCE) is very fast. Activation could be achieved at a moderate temperature, so that the adverse effects due to high temperature in the soil environment were mitigated. The reaction rate of TCE was directly proportional to the concentration of persulfate, indicating that the remediation rate can be controlled by the concentration of the injected persulfate. The solution was acidized after the oxidation, and this was dependent on the oxidation temperature. The consumption rate of persulfate was high in the presence of the target organic, but the self-decomposition rate became very low as the target was completely removed.

A Study on Syngas Production By Noncatalytic Partial Oxidation of Methane (메탄의 무촉매 부분산화를 통한 합성가스 제조 연구)

  • Na, Ik-Hwan;Yang, Dong-Jin;Choi, Sin-Yeong;Chae, Tae-Young;Bang, Byoung-Yeol;Yang, Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.337-343
    • /
    • 2009
  • Noncatalytic partial oxidation of methane for producing synthesis gas was studied in a lab-scale experimental apparatus. Partial oxidation developed for high-temperature, fuel-rich combustion and it is exothermic process. but Steam reforming and Caron reforming is highly endothermic process to need much energy. Noncatalytic partial oxidation of methane is affected by temperature and equivalent ratio, so we studied effect about composition of synthesis gas at lab scale reactor. We used electronic heater to control the temperature of reactor. The quality of synthesis gas is improved and reduced heat value to require at Noncatalytic partial oxidation because the reacting temperature is lower at oxy condition.

High Temperature Oxidation of Ti-43%Al-2%W-0.1%Si Alloys (Ti-43%Al-2%W-0.1%Si 합금의 고온산화)

  • 심웅식;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.128-134
    • /
    • 2003
  • Alloys of Ti-43%Al-2%W-0.1%Si were oxidized isothermally and cyclically between $900^{\circ}C$ and$ 1050^{\circ}C$, and their oxidation characteristics were studied. During isothermal tests, the alloys oxidized slowly up to 100$0^{\circ}C$, but fast at $1050^{\circ}C$. Though the scale adherence was not good above $900^{\circ}C$, the alloys displayed better oxidation behavior than unalloyed TiAl alloys. The oxide scales consisted primarily of an outer $TiO_2$ layer, intermediate $Al_2$$O_3$-rich layer, and an inner mixed layer of (TiO$_2$ $+Al_2$$O_3$). Tungsten was present mainly at the lower part of the oxide scale, while Si over the whole oxide scale.

Theoretical Calculation of Parabolic Rate Constant for High-Temperature Oxidation of Metals (금속의 고온 산화동안 포물선 속도상수의 이론적 계산)

  • Kim, Insoo;Cho, Weol Dong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.282-285
    • /
    • 2001
  • Based on the mass balance of anion and cation fluxes, the parabolic rate constant ($K_p$) of oxide grown during the high-temperature oxidation of metal is theoretically calculated. It is assumed that the diffusion of oxygen anion and metal cation through oxide scale obeys the Fick's 1st law, the growth of oxide is controlled by the diffusion of ions, electrical potential gradient as driving force for diffusion of ions is ignored, and oxidation occurs within an existing oxide layer. Then, the parabolic rate constant can be expressed by $K_p=[2{\rho}_{MmOn}{M^2}_{MmOn}(mD_oC_o{^e}+nD_MC_M{^e})/nm]$.

  • PDF

Effect of V on High Temperature Oxidation of TiAl Alloy (TiAl합금의 고온산화에 미치는 V효과)

  • ;Morihiko Nakamura
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.329-333
    • /
    • 2003
  • The high-temperature oxidation behavior of Ti39Al-10V alloy that consisted primarily of $\beta$-Ti, ${\gamma}$-TiAl, and $\alpha_2$ $-Ti_3$Al phases was studied. The relatively thick and porous oxide scales formed consisted primarily of an outermost, thin TiO$_2$ layer, and an outer, thin $Al_2$$O_3$-rich layer, and an inner, very thick (TiO$_2$, $Al_2$$O_3$) mixed layer. Vanadium was present uniformly throughout the oxide scale. The formation and subsequent evaporation of V-oxides such as VO, $VO_2$, and $V_2$O$_{5}$ deteriorated oxidation resistance and scale adherence of the TiAl alloy significantly.y.

High-temperature Oxidation of the TiAlCrSiN Film (TiAlCrSiN 박막의 고온 산화 부식)

  • Lee, Dong-Bok;Kim, Min-Jeong;Abro, M.A.;Yadav, P.;Shi, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.107-107
    • /
    • 2016
  • TiCrAlSiN films were developed in order to improve the high-temperature oxidation resistance, corrosion resistance, and mechanical properties of conventional TiN films that are widely used as hard films to protect and increase the lifetime and performance of cutting tools or die molds. In this study, a nano-multilayered TiAlCrSiN film was deposited by cathodic arc plasma deposition. It displayed relatively good oxidation resistance at $700-900^{\circ}C$, owing to the formation protective oxides of $Al_2O_3$, $Cr_2O_3$, and $SiO_2$, and semiprotective $TiO_2$. At $1000^{\circ}C$, the increased temperature led to the formation of the imperfect oxide scale that consisted primarily of the outer ($TiO_2$,$Al_2O_3$)-mixed scale and inner ($TiO_2$, $Al_2O_3$, $Cr_2O_3$)-mixed scale.

  • PDF

Effects of Si and Mo on the Temperature-Dependent Properties of High Si High Mo Ductile Cast Irons (고규소 고몰리브덴 구상흑연주철의 온도 의존 특성에 미치는 규소와 몰리브덴의 영향)

  • Choe, Kyeong-Hwan;Lee, Sang-Mok;Kim, Myung-Ho;Yun, Sang-Weon;Lee, Kyong-Whoan
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.257-264
    • /
    • 2009
  • The effects of silicon and molybdenum on the temperature-dependent properties of high silicon and high molybdenum ductile cast iron were investigated. Microstructure was composed of ferrite, cell boundary complex carbide, carbide precipitated in the grain and graphite. The number and size of carbide decreased with the increase of silicon content and increased with the increase of molybdenum content, however, the size of cell boundary carbide increased above 0.81wt%Mo. The room temperature tensile strength increased with the increase of silicon and molybdenum contents. That did not increase with the latter with more than 0.8wt%. Meanwhile the high temperature tensile strength showed the similar trend to that of room temperature one, that of the specimen with 0.55wt%Mo was the highest. The $A_1$ transformation temperature increased with the silicon and molybdenum contents, and showed similar tendency with the variation of strength. It was discussed due to the solubility limit of Molybdenum in ferrite, of which value was assumed to be in the vicinity of 0.81wt%Mo. The weight after oxidation at 1,173K showed the result caused by the difference in solubility of molybdenum in the matrix. That and the thickness change after oxidation did not show any consistent trend with the silicon and molybdenum contents.