• 제목/요약/키워드: High Temperature Fluid

검색결과 920건 처리시간 0.031초

소듐냉각 고속로의 커버가스 영역에서 열유동 해석 (ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN THE COVER GAS REGION OF SODIUM-COOLED FAST REACTOR)

  • 이태호;김성오;한도희
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.21-27
    • /
    • 2008
  • The reactor head of a sodium-cooled fast reactor KALIMER-600 should be cooled during the reactor operation in order to maintain the integrity of sealing material and to prevent a creep fatigue. Analyzing turbulent natural convection flow in the cover gas region of reactor vessel with the commercial CFD code CFX10.0, the cooling requirement for the reactor head and the performance of the insulation plate were assessed. The results showed that the high temperature region around reactor vessel was caused by the convective heat transfer of Helium gas flow ascending the gap between the insulation plate and the reactor vessel inner wall. The insulation plate was shown to sufficiently block the radiative heat transfer from pool surface to reactor head to a satisfactory degree. More than $32.5m^3$/sec of cooling air flow rate was predicted to maintain the required temperature of reactor head.

A Study on the Improvement of Heat Transfer Performance in Low Temperature Closed Thermosyphon

  • Han, Kyu-Il;Yee, Seok-Su;Park, Sung-Hyun;Lee, Suk-Ho;Cho, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1102-1111
    • /
    • 2002
  • The study focuses on the heat transfer performance of two-phase closed thermosyphons with plain copper tube and tubes having 50, 60, 70, 80, 90 internal grooves. Three different working fluids(distilled water, methanol, ethanol) are used with various volumetric liquid fill charge ratio from 10 to 40%. Additional experimental parameters such as operating temperature and inclination angle of zero to 90 degrees are used for the comparison of heat transfer performance of the thermosyphon. Condensation and boiling heat transfer coefficients, heat flux are obtained using experimental data for each case of specific parameter. The experimental results are assessed and compared with existing correlations. The results show that working fluids, liquid fill charge ratio, number of grooves and inclination angle are very important factors for the operation of thermosyphons. The relatively high rate of heat transfer is achieved when the thermosyphon with internal grooves is used compared to that with plain tube. The optimum liquid fill charge ratio for the best heat transfer performance lies between 25% and 30%. The range of the optimum inclination angle for this study is 20$^{\circ}$~30$^{\circ}$ from the horizontal position.

진동세관형 히트파이프(OCHP)를 이용한 매스콘크리트의 수화열 제어에 관한 실험적 연구 (An Experimental Study on Hydration Heat Control in The Mass Concrete Using Oscillating Capillary Tube Heat Pipe)

  • 백동일;김명식;이문식;김강민;염치선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.409-412
    • /
    • 2006
  • In process of reinforced concrete(RC) box structure, the heat of hydration may cause serious thermal cracking problems. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control in mass concrete using the OCHP(Oscillating Capillary tube Heat Pipe). Recently OCHP is drawn special attention from these points of low cost as well as short construction schedule for the manufacturing of heat exchanger, flexibility, simplification and high performance. There were three RC box molds$(1.2{\times}1.2{\times}1.2m)$ which shows a difference as compared with each other. One was not equipped with OCHP. While others were equipped with OCHP and these were cooled with air natural convection and spraying water respectively. The OCHP was composed of copper pipe with 12 turns(O.D : 4mm, I.D : 2.8mm). The working fluid was R-22 and its charging ratio was 30(Vol. %). In order to analyze the distribution of temperature and index figure of thermal crack in sequential placement of mass concrete, we used HYCON of computer program. As a result of the experiment, the peak temperature decreased about $15.6\sim23.4^{\circ}C$ than the general specimen and the probability of thermal crack generated in mass concrete decreased up to 0%.

  • PDF

초임계 이산화탄소를 이용한 Gemcitabine 함유 PLLA 미립자 제조: 공정 변수의 영향 (Production of Gemcitabine-Loaded Poly (L-lactic acid) Microparticles Using Supercritical Carbon Dioxide: Effect of Process Parameters)

  • 주현재;정인일;임교빈;유종훈
    • KSBB Journal
    • /
    • 제26권1호
    • /
    • pp.69-77
    • /
    • 2011
  • In this study, poly (L-lactic acid) (PLLA) microparticles containing gemcitabine hydrochloride were prepared by a supercritical fluid process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide as antisolvent. The influence of process parameters such as temperature, pressure, $CO_2$ and solution flow rate, solution concentration, and feed ratio of drug to polymer on the morphology and characteristics of the microparticles was studied in detail. The gemcitabine-loaded microparticles exhibited a spherical shape with a smooth surface. The entrapment efficiency of gemcitabine increased with increasing temperature, solution concentration and $CO_2$ flow rate and with decreasing drug/polymer feed ratio. The maximum drug loading obtained from the ASES process was found to be about 11%. The ASES-processed PLLA microparticles containing gemcitabine showed a relatively high initial burst due to the presence of surface pores on the microparticles and the poor affinity between drug and polymer.

공기 사이클 냉동기에 적응되는 반경 터빈의 개발 (Development of Radial Turbine for Air Cycle Refriger)

  • 권기훈;이기호;김종선
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.281-286
    • /
    • 2001
  • The radial turbine has been successfully applied to the systems which request relatively small output compared with the axial turbine, and has low manufacturing cost due to it's small size and simple structure. Recently, the researches on the development and the efficiency maximization of the radial turbine are in progress corresponding with the trend toward miniaturization in turbo machinery and the development of small dispersed power generation systems. The radial turbine is to be applied to our turbo refrigerator of which engine speed is 26,000 rpm and turbine efficiency is $88\%$. Also, as a heat exchanger is accepted instead of a combustor in our turbo refrigerator, the design of radial turbine has been performed to be appropriate to the circumstance of low temperature air, not high temperature combustor gas, into the turbine inlet . This radial turbine is being developed in consideration with not only the aero-dynamic performance but also the simplification of manufacturing and integration, and the durability at operating condition. This paper refer to the performance evaluation about the radial turbine design by comparison with consulting from Russia and the our evaluation about various design factors which are considered in aero-dynamic design process.

  • PDF

팬과 히트 싱크를 이용한 LED 전조등의 냉각성능 해석 (Cooling Performance of LED Head Lamp with Heat Sink and Cooling Fan)

  • 고만석;이주한;오상준;조현석;서태범
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.947-951
    • /
    • 2009
  • LED has the merits of high reliability, semi-permanent life, rapid-response and its small size for use as light source of head lamp. But the dependence of its performance and life on temperature affect on its practical use. Which dependence makes problem when the LED is heated up to a higher temperature level by self-generation of heat, due to "highly integration" to get enough quantity of light. To solve this problem, effective cooling system is needed that consider conduction, convection and radiation. This study points out the limits of natural convection cooling system and propose of forced convection with heat sink. Also, it describes a correlation between heat sink area and fluid velocity using numerical analysis to optimize the cooling system.

진공차단부에서 발생하는 확산형 아크 수치해석 (Numerical Study on a Diffused-mode Arc within a Vacuum Interrupter)

  • 조성훈;황정훈;이종철;최명준;권중록;김윤제
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.479-482
    • /
    • 2008
  • In order to more closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, the thermal-fluid characteristics of high current vacuum arcs were calculated by a commercial multiphysics package, ANSYS, in order to obtain Joule heat, Lorentz force and the interactions with flow variables. We assumed the diffused-mode arc within an AMF vacuum interrupter. It was found with four different currents that the temperature distributions on the anode surface are diffused uniformly without concentration in 7kA for both types (cup and coil-type). But the arc plasma transition and an increase of thermal flux density for increasing the applied current have caused the change of temperature distributions on the anode surface. We should need further studies on the two-way coupling method and radiation model for arc plasmas in order to accomplish the advanced analysis method for multiphysics.

  • PDF

배관계통에서의 열성층 현상 모사를 위한 수치해석 (Numerical Analyses to Simulate Thermal Stratification Phenomenon in a Piping System)

  • 정재욱;김선혜;장윤석;최재붕;김영진;김진수;정해동
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.381-388
    • /
    • 2009
  • In some portions of nuclear piping systems, stratification phenomena may occur due to the density difference between hot and cold stream. When the temperature difference is large, the stratified flow under diverse operating conditions can produce high thermal stress, which leads to unanticipated piping integrity issues. The objectives of this research are to examine controvertible numerical factors such as model size, grid resolution, turbulent parameters, governing equation, inflow direction and pipe wall. Parametric three-dimensional computational fluid dynamics analyses were carried out to quantify effects of these parameters on the accuracy of temperature profiles in a typical nuclear piping with complex geometries. Then, as a key finding, it was recommended to use optimized mesh of real piping with the conjugated heat transfer condition for accurate thermal stratification analyses.

가스하이드레이트 형성 과정의 비저항 모니터링 (Electrical Resistivity Monitoring of Gas Hydrate Formation)

  • 이주용;이재형;이대성;이원석;김세준;허대기;김현태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.186-187
    • /
    • 2008
  • Electrical resistivity in hydrate-bearing sediments is sensitive to porosity, gas hydrate saturation, gas content, pore fluid composition, and temperature, so electrical measurements such as well logs and electromagnetic surveys have been used to explore gas hydrate-bearing formation. The high pressure tomography cell is designed considering the effect of electrode configuration and electrical shielding on tomography measurements and the safety. The evolution of electrical conductivity during $CO_2$ hydrate formation and dissociation reflects the combined effects of concurrent changes that include ionization of dissolved $CO_2$, temperature-dependent ionic mobility, changes in the degree of saturation, ion exclusion, surface conduction, and porosity changes. Measurements during hydrate formation and dissociation require careful analysis to properly interpret signatures, in particular when out-of plane conductivity anomalies prevail.

  • PDF

ISG 구동용 인버터의 열유동 해석에 관한 연구 (A Study on the Thermo-flow Analysis of ISG (Integrated Starter and Generator) Driving Inverter)

  • 김대건;김성철
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.145-150
    • /
    • 2013
  • Recently, many vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. ISG (integrated starter & generator) is one of main electric parts and can improve fuel efficiency by using idle stop & go function and regenerative braking system. However, if ISG driving inverter works under the continuously high load condition, it will make the performance and durability of the inverter decreased with rising temperature. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the inverter. As a result, we found the MOSFET of the air cooled inverter was increased up to $116^{\circ}C$ over the limit temperature. On the other hand, the liquid cooled type inverter's MOSFET was decreased by about $17^{\circ}C$ compared to that of the air cooled inverter. Therefore, we verified the feasibility of the liquid cooled type using the present cooling structure.