• Title/Summary/Keyword: High Temperature Flow Mechanism

Search Result 126, Processing Time 0.029 seconds

fabrication of Zirconia Thin Films by Plasma Enhanced Metal-Organic Chemical Vapor Deposition (플라즈마 유기금속 화학증착을 이용한 지르코니아 박막제조)

  • Kim, Gi-Dong;Jo, Yeong-A;Sin, Dong-Geun;Jeon, Jin-Seok;Choe, Dong-Su;Park, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.155-162
    • /
    • 1999
  • Zirconia thin films of uniform structure were fabricated by plasma-enhanced metal-organic chemical vapor deposition. Deposition conditions such as substrate temperature were observed to have much influence on the formation of zirconia films, therefore the mechanism of decomposition of $Zr[TMHD]_4$precursor and film growth were examined by XRD, FT-IR etc., as well as the determination of the optimal deposition condition. From temperature dependence on zirconia, below the deposition temperature of 523K, the amorphous zirconia was formed while the crystalline of zirconia with preferred orientation of cubic (200) was obtained above the temperature. Deposits at low temperatures were investigated by FT-IR and the absorption band of films revealed that the zirconia thin film was in amorphous structure and has the same organic band as that of Zr precursor. In case of high temperature, it was found that Zr precursor was completely decomposed and crystalline zirconia was obtained. In addition, at 623K the higher RF power yielded the increased crystallinity of zirconia implying an increase in decomposition rate of precursor. However, it seems that RF power has nothing with the zirconia deposition process at 773K. It was found that the proper bubbler temperature of TEX>$Zr[TMHD]<_4$ precursor is needed along with high flow rate of carrier gas. Through AFM analysis it was determined that the growth mechanism of the zirconia thin film showed island model.

  • PDF

Patterning of Pt thin films using SiO$_2$mask in a high density plasma (고밀도 플라즈마에서 규소산화막을 마스크로 이용한 백금박막의 페터닝)

  • 이희섭;이종근;박세근;정양희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.87-92
    • /
    • 1997
  • Inductively coupled Cl$_{2}$ plasma has been studied to etch Pt thin films, which hardly form volatile compound with any reactive gas at normal process temperature. Low etch rate and residue problems are frequently observed. For higher etch rate, high density plasma and higher process temperature is adopted observed. For higher etch rate, high density plasma and higher process temperature is adopted and thus SiO$_{2}$ is used as for patterning mask instead of photoresist. The effect of O$_{2}$ or Ar addition to Cl$_{2}$ was investigated, and the chamber pressure, gas flow rate, surce RF power and bias RF power are also varied to check their effects on etch rate and selectivity. The major etching mechanism is the physical sputtering, but the ion assisted chemical raction is also found to be a big factor. The proposs can be optimized to obtain the etch rate of Pt up to 200nm/min and selectivity to SiO$_{2}$ at 2.0 or more. Patterning of submicron Pt lines are successfully demonstrated.

  • PDF

A Study on High Temperature Deformation Behavior of Spray-Formed High Speed Steels (분무주조 고속도공구강의 고온변형 거동에 관한 연구)

  • Ha, T.K.;Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2018
  • In the present study, the mechanical behavior of the spray-formed high speed steel was investigated employing the internal variable theory of inelastic deformation. Special attention was focused on the effect of the microstructure evolution during the hot working process, such as the distribution of carbides to provide a basic database for the production condition of high speed steels with excellent properties. The billets of high speed steel ASP30TM were fabricated by a spray forming, and the subsequently hot-rolled and heat-treated process to obtain uniformly distributed carbide structure. As noted the spray-formed high speed steel showed relatively coarser carbides than hot-rolled and heat-treated one with fine and uniformly distributed carbide structure. The step strain rate tests and high temperature tensile tests were carried out on both the spray-formed and the hot-rolled specimens, to elucidate their high temperature deformation behavior. The spray-formed high speed steel showed much higher flow stress and lower elongation than the hot-rolled and heat-treated steel. During the tensile test at $900^{\circ}C$, the interruption of the deformation for 100 seconds was conducted to reveal that the recovery was a main dynamic deformation mechanism of spray formed high speed steel. The internal variable theory of the inelastic deformation was used to analyze data from the step strain rate tests, revealing that the activation energies for hot deformation of as-spray-formed and hot-worked steels, which were 157.1 and 278.9 kJ/mol, and which were corresponding to the dislocation core and lattice diffusions of ${\gamma}-Fe$, respectively.

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

Wear Behaviours of Dental Composite Resins Containing Prepolymerized Particle Fillers (1st Report) (有機複合필러를 包含하는 齒科用 콤포짓트 레진의 磨耗擧動(제1보))

  • 임정일;김교한;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.124-130
    • /
    • 1998
  • The wear characteristics and wear mechanisms of dental composite resins were investigated. Composite resins such as Metalii, Silux Plus, Heliomolar and Palfique Estelite were selected as specimens and contents of filler in specimens in order to analyze the effect of Prepolymerized Particle Fillers in friction and wear characteristics. Ball on flat wear tester was used for a wear test. Friction and wear tests are carried out at room temperature. The friction coefficient of Metafil was quite high relatively, and the wear resistance of Silux Plus and Palfique Estelite was better than that of Metafil and Hellomolar at the same experimental condition. The main wear mechanism is plastic flow and abrasive wear by crack propagation.

  • PDF

Wear Behaviours of Dental Composite Resins Containing Prepolymerized Particle Fillers (1st Report) (유기복합필러를 포함하는 치과용 콤포짓트 레진의 마모거동(제1보))

  • 임정일;김교한;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.212-217
    • /
    • 1999
  • The wear characteristics and wear mechanisms of dental composite resins were investigated. Composite resins such as Metafil, Silux Plus, Heliomolar and Palfique Estelite were selected as specimens and contents of filler in specimens in order to evaluate the effect of Prepolymerized Particle Fillers in friction and wear characteristics. Ball on flat wear tester was used for the wear test at room temperature. The friction coefficient of Metafil was quite high relatively, and the wear resistances of Silux Plus and Palfique Estelite were better than that of Metafil and Heliomolar at the same experimental condition. It was found that The main wear mechanism is plastic flow and abrasive wear by failure of filler's bond to the matrix.

High Temperature Deformation Behavior of Microalloyed Hot Forging Steels (열간 단조용 비조질강의 고온 변형 거동에 관한 연구)

  • Wi, Gyeom-Bok;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.343-352
    • /
    • 1992
  • The high temperature deformation behavior of microalloyed hot forging steels has been examined as a function of the temperature, the strain rate, and the alloying element by using high temperature compression test. The high temperature deformation mechanism, which was obtained by analyzing the flow stress-strain curve and microstructure, could be considered to dynamic recrystallization. The peak stress of Nb-V-Mo steel was more increased and the dynamic recrystallization of Nb-V-Mo steel was faster than those of Nb-V steel. The peak stress of 1.2Mn-0.09Nb steel was more increased and the dynamic recrystallization of 1.2Mn-0.09Nb was delayed a little bit than those of 1.0Mn-0.05Nb. The peak stress of C-Nb-V steel was more increased and the dynamic recrystallization of C-Nb-V steel was delayed than those of C-steel. The constitutive equation of high temperature deformation had a power law type. The grain size of dynamic recrystallization was refined as the Zener-Hollomon parameter was increased. The relation of the dynamic recrystallization grain size and Zener-Hollomon parameter could be quantified to power law.

  • PDF

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process (진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구)

  • Park, Hyungkwon;Kwon, Juhyuk;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

Micro-Gravity Research on the Atomization Mechanism of Near-Critical Mixing Surface Jet

  • Tsukiji, Hiroyuki;Umemura, Akira;Hisida, Manabu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.774-778
    • /
    • 2004
  • The atomization process of a circular $SF_{6}$ liquid jet issued into an otherwise quiescent, high-pressure $N_2$ gas was observed to explore the breakup mechanism of liquid ligaments involved in turbulent atomization. Both liquid and gas temperatures were fixed at a room temperature but the gas pressure was elevated to more than twice the critical pressure of $SF_{6}$. Therefore, the liquid surface was in a thermodynamic state close to a critical mixing condition with suppressed vaporization. Since the surface tension and the surface gas density approach zero and the surface liquid density, respectively, phenomena equivalent to those which would appear when a very high speed laminar flow of water were injected into the atmospheric-pressure air can be observed by issuing $SF_{6}$ liquid at low speeds in micro-gravity environment which avoid disturbances due to gravity forces. The instability ob near-critical mixing surface jet was quantitatively characterized using a newly developed device, which could issue a very small amount of $SF_{6}$ liquid at small constant velocity into a very high-pressure $N_2$ gas.

  • PDF

Investigation on Freezing in the Freezing Compartment of a Side by Side Refrigerator (양문형 냉장고 냉동실 결빙원인해석 및 최소화 방안)

  • Kim, Y.K.;Jung, H.Y.;Choi, Y.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • A side by side refrigerator is popularly used one among electric home appliances according to the rise of the customer's living standard. But the frost problem in freezing compartment comes out whenever we develop the high quality refrigerator. In this research, internal flow simulation and temperature measurement were carried out by using CFD and T-type thermocouple respectively in order to understand freezing mechanism. It was revealed that the amount of frost beneath the 1st and 2nd shelves is approximately 40% of total frost and the cause of frost generation is due to bad circulation of low speed cold flow. Using this analysis, the shapes of outlets under shelves are modified. So, the amount of frost in this modified model decreases 6% comparing to original one.