• Title/Summary/Keyword: High Temperature Clean-up

Search Result 43, Processing Time 0.097 seconds

Numerical Study on High Temperature CO-Shift Reactor in IGFC (고온수소 전환 반응기에 관한 수치해석적 연구)

  • SEO, DONG-KYUN;LEE, JIN-HYANG;CHI, JUN-HWA;HONG, JIN-PYO;OH, SUK-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.324-330
    • /
    • 2018
  • In this study a numerical study was conducted to show flow, temperature and gas distributions in a high temperature CO shift reactor which was designed specially for energy saving and then evaluated with the related experiment. Mole fractions of syngas at the end of the catalyst bed were predicted with various assumed pre-exponential factors, were compared with the corresponding experimental results and $10^8$ was finally selected as the value. With the selection, a base case was examined. It was calculated that the inlet duct attached asymmetrically to the CO shift reactor affects on the distribution of the upward momentum (+z directional). In addition, CO conversion ratio is achieved up to 90% in the catalyst bed and especially it reached up to 70% at the initial part of catalyst bed.

Operation Characteristics of Pilot-scale Coal Gasifier for High Temperature Dry Clean-up System (고온 건식 정제시스템 적용을 위한 Pilot급 석탄가스화기의 운전특성)

  • Lee, Seung Jong;Yoo, Sang Oh;Jung, Woo Hyun;Chung, Seok Woo;Yun, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.132.1-132.1
    • /
    • 2010
  • 자원고갈과 지구온난화 등으로 재생에너지의 사용 및 보급이 지속적으로 증가할 것으로 예상되지만, 세계적으로 매장량이 풍부한 석탄의 사용량은 2030년 이후에도 지속적으로 증가될 전망이다. 따라서 세계 각국은 기후변화 규제에 대응하면서도 청정하게 석탄을 사용하기 위한 기술의 개발 및 보급을 활발히 진행 중이며, 국내에서도 온실가스 감축과 동시에 국가 성장 동력화를 추진하고 있다. 석탄가스화 기술은 석탄을 가스화하여 생산된 CO, $H_2$가 주성분인 합성가스를 연료로 활용하는 기술로, 이용 효율이 높고 석탄을 천연가스 수준으로 청정하게 사용할 수 있는 차세대 석탄이용 기술이다. 본 연구에서는 pilot급 석탄 가스화기에서 생산된 합성가스에 함유된 산성가스를 고온에서 건식으로 제거하는 시스템을 구축하였으며, 석탄 합성가스를 고온 건식 정제시스템에 공급하기 위한 석탄가스화기의 운전특성을 파악하였다.

  • PDF

Characteristics of Coals Extracted Using Solvent at Mild and High Temperature Conditions (온순조건과 고온조건에서 용매 추출한 석탄의 특성 비교)

  • Park, Keun Yong;Choi, Ho Kyung;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Han;Lee, Si Hyun;Na, Byung Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.529-533
    • /
    • 2012
  • In this study, we compare various physicochemical properties of solvent extracted coals obtained at both mild and high temperature conditions. In order to characterize the extraction behavior, experiments were performed using a sub-bituminous coal (Kideco) and a polar solvent (N-methyl-2-pyrrolidinone, NMP), where the extraction temperature and the effect of solvent recycling were evaluated. As the extraction temperature increased up to $350^{\circ}C$, an extraction yield and a calorific value of the extracted coal increased, while an ash content of the extracted coal decreased. FT-IR results revealed that the surface of the coal extracted at $350^{\circ}C$ was found to contain more amide, aromatic ester, and aliphatic ether groups than that at the lower temperatures. The result of MALDI-TOF/MS analysis confirmed that the smaller molecules with 300~500 m/z were extracted at a mild condition, while the bigger molecules in the range of 500~1500 m/z were extracted at the high temperature.

$SO_2/O_2$ Separation Process with EMIm[$EtSO_4$] in SI Cycle for the Hydrogen Production by Water Splitting (물분해 수소제조를 위한 SI cycle에서의 EMIm[$EtSO_4$]를 이용한 $SO_2/O_2$ 분리공정)

  • Lee, Ki-Yong;Kim, Hong-Gon;Jung, Kwang-Deog;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • $SO_2$ has been absorbed and separated selectively by an ionic liquid from $SO_2/O_2$ mixture decomposed from sulfuric acid during the thermochemical SI cycle for the water splitting. In order to design and operate high pressure $SO_2/O_2$ separation system, the solubility of $SO_2$ in [EMIm]$EtSO_4$ (1-ethyl-3-methylimidazolium ethylsulfate) has been measured by Magnetic Suspension Balance at high pressure and temperature. Based on the measured solubility, a pressurized separation system was set up and operated. 194 L/h of $SO_2$($SO_2:O_2$=0.65:1) has been separated with 99.85% of $O_2$ at the vent of absorption tower, which is 22.7% of the theoretically ideal capacity of the system. This discrepancy results from the reduced contact between the gaseous $SO_2$ and the ionic liquid. Increased $SO_2$ supply, scale-up of the absorption column, and a faster ionic liquid circulation speed were suggested to improve the separation capacity.

A Study of Epitaxial Growth on the Clean and Surfactant (Sn) Adsorbed Surface of Ge(111) (계면금속(Sn)이 흡착된 Ge(111)표면에서의 Ge의 층상성장에 대한 연구)

  • 곽호원
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.77-81
    • /
    • 1998
  • The eptiaxial growth of Ge on the clean and surfactant (Sn) adsorbed surface of Ge(111) was studied by the intensity oscillation of a RHEED specular spot. In the case of epitaxial growth without the adsorbed surfactant, the RHEED intensity oscillation was stable and periodic up to 24 ML at the substrate temperature of $200^{\circ}C$. Therefore the optimum temperature for the epitaxial growth of Ge on clean Ge(111) seems to be $200^{\circ}C$. However, in the case of epitaxial growth with the adsorbed surfactant, the irregular oscillations are observed in the early stage of the growth. The RHEED intensity osicillation was very stable and periodic up to 38 ML, and the d2$\times$2 structure was not charged with continued adsorption of Ge at the substrate temperature of 2002$\times$2. These results may be explained by the fact that the diffusion length of Ge atoms is increased by decreasing the activation energy of the Ge surface diffusion, resulted by segregation of Sn toward the growing surface.

  • PDF

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.

Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals (인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가)

  • KIM, SOOHYUN;VICTOR, PAUL;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.

Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector (융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성)

  • Park, Young Ok;Jeong, Ju Yeong
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.

Reaction of Natural Manganese Dioxide with Hydrogen Sulfide at High-Temperature (고온에서 천연산 망간광석과 황화수소의 반응특성)

  • Shon, Byung-Hyun;Oh, Kwang-Joong;Kim, Young-Sick
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Sulfur emission control in coal gasification plants implies the removal of $H_2S$ from the fuel gas in the gas clean-up system. In this study, the effects of particle size of sorbents, temperature of sulfidation and sorbent characteristics on the $H_2S$ removal efficiency of manganese ore were investigated. Experimental results showed that the removal efficiency of $H_2S$ was optimum when the temperature was about $700^{\circ}C$. And that the smaller particle size, the higher the $H_2S$ removal efficiency, but that was not effective very much. As the temperature increases, the reactivity of sorbents has lowered because agglomeration of sorbents increased the intraparticle transport resistance. This phenomenon was confirmed by SEM photographs. The equilibrium ratio ($P_{H_2O}/P_{H_2S}$) obtained by experiments is represented as a ${\log}(P_{H_2O}/P_{H_2S})=5653/T-3.7909$. It was showed that the natural manganese ore could be used as a sorbent because its capacity for $H_2S$ removal is equivalent to the eariler developed sorbents.

  • PDF