• 제목/요약/키워드: High Strain Rate Condition

검색결과 138건 처리시간 0.029초

부산지역 준설매립지반의 압밀거동 특성 분석 (Analyses on Consolidation Characteristics of Dredged and Reclaimed Soils in Busan Area)

  • 유남재;김동건;황희석
    • 산업기술연구
    • /
    • 제32권A호
    • /
    • pp.87-94
    • /
    • 2012
  • For soils with high void ratios, the inverse method of utilizing results obtained from centrifuge model test was used to find the constitutive relation of effective stress - void ratio - permeability whereas conventional oedometer test and constant rate of strain consolidation(CRS) test about settlement of interface and pore pressure and distribution with time were compared with numerically estimated values to confirm such a constitutive relation as obtained from the inverse method. As results of numerical method, the volumetric ratio and reclamation velocity were obtained for the reclamation condition.

  • PDF

가열 속도에 따른 콘크리트의 폭렬 특성 및 내부 수증기압력 평가 (Evaluation of Spalling Property and Water Vapor Pressure of Concrete with Heating Rate)

  • 최경철;이태규;남정수;박병근;김규용
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.605-612
    • /
    • 2012
  • 콘크리트의 폭렬 발생 메커니즘에 대해서는 수증기압력에 의한 파괴, 내 외부의 온도 차이에 의해 발생하는 표면 압축력에 의한 파괴, 앞선 두 가지 요인의 복합작용에 의한 파괴가 있다. 이러한 폭렬에 영향을 주는 요인은 콘크리트 자체의 재료적 특성과 관계된 내부 요인과 환경에 의한 외부 요인으로 나눌 수 있으며 폭렬 현상을 이해하기 위해서는 두 가지 요인에 대한 충분한 고려가 필요하다. 외부 환경의 요소로써 가열 속도가 다른 경우 콘크리트 내부의 수분응집 및 수증기압력의 거동이 달라질 것으로 판단된다. 따라서 이 연구에서는 30, 50, 70, 90, 110 MPa의 다양한 강도 영역의 콘크리트를 대상으로 ISO-834 표준가열곡선과 $1^{\circ}C/min$의 가열 속도를 적용하여 가열 속도에 따른 콘크리트의 폭렬 성상 및 수증기압력, 열팽창 변형을 평가하였다. 실험 결과 콘크리트의 폭렬은 급속 가열조건에서 발생하며, 콘크리트가 고강도화될수록 폭렬에 의한 단면손실량이 증가하였다. 또한, 가열 초기에 콘크리트 표면부의 수증기압력 상승 속도 및 가열 속도에 따른 열팽창에 의한 초기압력 상쇄효과가 콘크리트의 폭렬 발생에 중요한 영향을 미치는 것으로 나타났다.

Observed Quasi-steady Kinetics of Yeast Cell Growth and Ethanol Formation under Very High Gravity Fermentation Condition

  • Chen Li-Jie;Xu Ya-Li;Bai Feng-Wu;Anderson William A.;Murray Moo-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권2호
    • /
    • pp.115-121
    • /
    • 2005
  • Using a general Saccharomyces cerevisiae as a model strain, continuous ethanol fermentation was carried out in a stirred tank bioreactor with a working volume of 1,500 mL. Three different gravity media containing glucose of 120, 200 and 280 g/L, respectively, supplemented with 5 g/L yeast extract and 3 g/L peptone, were fed into the fermentor at different dilution rates. Although complete steady states developed for low gravity medium containing 120 g/L glucose, quasi-steady states and oscillations of the fermented parameters, including residual glucose, ethanol and biomass were observed when high gravity medium containing 200 g/L glucose and very high gravity medium containing 280 g/L glucose were fed at the designated dilution rate of $0.027\;h^{-1}$. The observed quasi-steady states that incorporated these steady states, quasi-steady states and oscillations were proposed as these oscillations were of relatively short periods of time and their averages fluctuated up and down almost symmetrically. The continuous kinetic models that combined both the substrate and product inhibitions were developed and correlated for these observed quasi-steady states.

생쥐 난자의 단위발생에 관한 연구 I. Ethanol 및 hyaluronidase처리에 의한 단위발생유기 (Parthenogenetic development of mouse eggs I. Parthenogenetic activation by ethanol and hyaluronidase treatments)

  • 이효종;하대식;강태영;최민철
    • 대한수의학회지
    • /
    • 제32권4호
    • /
    • pp.663-669
    • /
    • 1992
  • This experiment was carried out to find out the best condition for the parthenogenetic activation of mouse eggs by treating ethanol and hyaluronidase. For the parthenogenetic activation of eggs with ethanol, cumulus cell enclosed or denuded eggs were treated with 7% ethanol in D-PBS for 5, 7 or 9 minutes. For the activation of eggs with hyaluronidase, the eggs with cumulus masses were released into D-PBS with 100 unit hyaluronidase and treated for 10, 12 or 13 minutes. All of the treated eggs were incubated in BMOC-3 solution for 5 hours at $37^{\circ}C$ at an atmosphere of 5% $CO_2$ in air. The types of parthenogenetic eggs were morphologically classified into haploid, diploid, immediate cleavage eggs under an inverted microscope. The results obtained in this experiment were summarized as follows ; 1. High activation rate(99%) had been achieved by treating the eggs with 7% ethanol for 7 minutes. 2. With 100 IU hyaluronidase, high activation rate (94%) had been achieved by treating for 12 minutes. 3. The most frequent type of parthenogenetic eggs activated with ethanol or hyaluronidase was haploid (p<0.05). 4. The eggs collected from 18 to 22 hours post HCG injection showed higher activation rate than the eggs collected at 16 hours post HCG injection. 5. No significant difference (p>0.05) in activation rate was shown in strain of mouse and in presence of cumulus cells.

  • PDF

Investigation of mechanical surface treatment effect on the properties of titanium thin film

  • Ehsan Bazzaz;Abolfazl Darvizeh;Majid Alitavoli;Mehdi Yarmohammad Tooski
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.33-49
    • /
    • 2024
  • Using the mechanical treatments for mechanical properties improvement was rarely in the development scope before. This research approves through analytical ways that surface impacts can improve the quality of the surface significantly. This fact is approved for deposited titanium on silicone substrate. The new algorithm called minimum resultant error method (MREM) which is a direct combination of nanoindentation, FEM and dimensional analysis through a reverse method is utilized to extract the mechanical characteristics of the coating surface before and after impact. This method is extended to the time dependent behavior of the material to obtain strain rate coefficient. To implement this new approach, a new analysis technic is developed to define the residual stress field caused by surface impact as initial condition for nanoindentation. Analyzing the model in micro and macro scale at the same time was one of the main resolved challenges in this study. The result was obtaining of the constants of Johnson-Cook constitutive equation. Comparing the characteristics of the coating surface before and after impact shows high improvement in yield stress (34%), Elastic modulus (7.75%) and strain hardening coefficient (2.8%). The main achievement is that the strength improvement in titanium thin layer is much higher than bulk titanium. The yield strength shows 41.7% improvement for coated titanium comparing with 24% for bulk material. The rate of enhancement is about 6 times when it comes to the Young's modulus.

고온분위기에서 열응력을 받는 부재의 수명예측에 관한 연구 (A study of life predictions on very high temperture thermal stress)

  • 김성청
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.117-125
    • /
    • 1998
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. The volume free energy associated with Helmholtz free energy includes strain energies caused by applied stress and dislocations piled up in interface(DPI). The energy due to DPI is found by modifying the result of Dundurs and Mura[4]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(r) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius $r^*$ and incubation time $t^*$ to maximise Helmholtz free energy is found in present analysis. Also, kinetics of cavity formation are investigated using the results obtained by Riede [7]. The incubation time is defined in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that 1) strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius $r^*$ decreases or holds constant with increase of the time until the kinetic condition(eq. 2.3) is satisfied. there for the cavity may not grow right after it is formed, as postulated by Harris [15], and Ishida and Mclean [16], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f)and particle size on the incubation time are estimated using material constants of the copper as matrix.

  • PDF

Humic Substances Act as Electron Acceptor and Redox Mediator for Microbial Dissimilatory Azoreduction by Shewanella decolorationis S12

  • Hong, Yi-Guo;Guo, Jun;Xu, Zhi-Cheng;Xu, Mei-Ying;Sun, Guo-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.428-437
    • /
    • 2007
  • The potential for humic substances to serve as terminal electron acceptors in microbial respiration and the effects of humic substances on microbial azoreduction were investigated. The dissimilatory azoreducing microorganism Shewanella decolorationis S12 was able to conserve energy to support growth from electron transport to humics coupled to the oxidation of various organic substances or $H_2$. Batch experiments suggested that when the concentration of anthraquinone-2-sulfonate (AQS), a humics analog, was lower than 3 mmol/l, azoreduction of strain S12 was accelerated under anaerobic condition. However, there was obvious inhibition to azoreduction when the concentration of the AQS was higher than 5 mmol/l. Another humics analog, anthraquinone-2-sulfonate (AQDS), could still prominently accelerate azoreduction, even when the concentration was up to 12 mmol/l, but the rate of acceleration gradually decreased with the increasing concentration of the AQDS. Toxic experiments revealed that AQS can inhibit growth of strain S12 if the concentration past a critical one, but AQDS had no effect on the metabolism and growth of strain S12 although the concentration was up to 20 mmol/l. These results demonstrated that a low concentration of humic substances not only could serve as the terminal electron acceptors for conserving energy for growth, but also act as redox mediator shuttling electrons for the anaerobic azoreduction by S. decolorationis S12. However, a high concentration of humic substances could inhibit the bacterial azoreduction, resulting on the one hand from the toxic effect on cell metabolism and growth, and on the other hand from competion with azo dyes for electrons as electron acceptor.

자동차용 엔진 마운트의 피로거동에 관한 연구 (Fatigue Characteristics of Engine Rubber Mount for Automotive)

  • 서창민;오상엽;박대규;장주호
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.45-53
    • /
    • 2009
  • In this study, Finite Element Analysis (FEA) was used to decide three kinds of material property of vibration proof rubber with the unique characteristic of non-linear and large deformation. As well, three types of hardness (Hs 50, 55, 60) were compared with the result of fatigue tests, fatigue life was able to be predicted. The request for fatigue life becomes strict more and more as increasing stress under conditions like a compaction, high load and high temperature for parts because it is main characteristics of rubber mount for automotive. Regarding to the fatigue life under dynamic deformation condition, it can be predicted as checking forced deformation extends and its frequency and its strain-life curve. As for material property tests of uniaxial tension test, uniaxial compression test, pure shear test, Ogden model was used for FEA by observing relations between stress and strain's rate as curve fitting. As a result of FEA, fatigue life for rubber mount was predicted and accorded well with the experimental data of fatigue test with hourglass specimens. In addition, its property of the predictable fatigue life method suggested in this study was accorded well with the experimental data by comparing the predicted fatigue life of FEA with the result of fatigue test for rubber component of engine rubber mount.

마그네슘합금 AZ31 압출재의 기계적특성에 미치는 Ca의 효과 (Effect of Ca addition on the microstructure and mechanical properties of extruded AZ31 alloy)

  • 김정한;강나은;이상복;임창동;유봉선;김병기
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.281-284
    • /
    • 2007
  • The effect of Ca addition on the microstructure evolution and deformation behavior of AZ31 magnesium alloy produced by hot extrusion was investigated. For this purpose, Ca was added into AZ31 melts to the level of 0.7 and 2.0 wt.% Ca. Then, AZ31 base alloy and Ca modified AZ31 alloys were extruded at $383^{\circ}C$. Ca added alloys showed finer grain size and increased hardness value rather than AZ31 base alloy. After isothermal hot compression, the shape of tested specimen exhibited a noticeable anisotropy due to the crystallographic texture effect. The ratio of major and minor axes of ovality was not directly related to test condition and Ca amount. Flow stress level increases with the increase of Ca addition at temperature below $300^{\circ}C$ because of fine microstructure. However, at high temperature and low strain rate region ($400^{\circ}C$ and $10^{-3}s^{-1}$), reverse tendency was observed since main deformation mechanism changes from dislocation slip to grain boundary sliding or diffusional process at high temperature.

  • PDF

Citrobacter amalonaticus Y19의 영양종속 성장을 이용한 Trickle Bed Reactor에서의 연속적인 수소생산 (Continuous Hydrogen Production by Heterotrophic Growth of Citrobacter amalonaticus Y19 in Trickle Bed Reactor)

  • 박지영;이태호;오유관;김중래;설은희;정규열;김미선;박성훈
    • KSBB Journal
    • /
    • 제20권6호
    • /
    • pp.458-463
    • /
    • 2005
  • Polyurethane foam이 충진된 trickle bed reactor에서 통성혐기성 미생물인 Citrobacter amalonaticus Y19을 이용하여 일산화탄소와 물로부터 연속적인 수소생산을 살펴보았다. C. amalonaticus Y19은 설탕을 탄소원으로 할 때 호기적 조건에서 13 g/L까지 성장하였고 혐기조건에서 CO 가스를 주입하였을 때 약 60시간만에 최대 수소 생산 활성을 나타내었다. TBR 반응기에서 유입가스의 CO의 분압이 증가할수록 혹은 기체 체류시간이 감소할수록 수소 생성속도가 증가하였으나 CO의 전환율은 반대로 감소하였다. 그러나 액상의 유속변화는 반응기 운전 결과에 큰 영향을 주지 못했다. 본 실험에서 얻은 최대 수소 생성속도는 기체 체류시간 25분, 유입 CO 압력 0.4 atm에서 16 mmol/L/hr(전환율 33%)이었다. 이 값은 비슷한 반응기에 대해 보고된 Cowger의 결과보다 약 2배 이상 높은 값으로 통성혐기성균주의 고농도 배양과 다공성 충진물의 사용에 의한 높은 기-액 물질 전달 속도가 그 원인으로 추정되었다.