• Title/Summary/Keyword: High Speed Shear Test

Search Result 95, Processing Time 0.021 seconds

Effect of Zn content on Shear Strength of Sn-0.7Cu-xZn and OSP surface finished Joint with High Speed Shear Test (Sn-0.7Cu-xZn와 OSP 표면처리 된 기판의 솔더접합부의 고속 전단강도에 미치는 Zn의 영향)

  • Choi, Ji-Na;Bang, Jae-Oh;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2017
  • We investigated effect of Zn content on shear strengh of Sn-0.7Cu-xZn and OSP surface finished solder joints. Five pastes of Sn-0.7Cu-xZn (x=0, 0.5, 1.0, 1.5, 2.0 wt.%) solders were fabricated by mixing of solder powder and flux using planatary mixer. $180{\mu}m$ diameter solder balls were formed on OSP surface finished Cu electrodes by screen print method, and the reflow process was performed. The shear strength was evaluated with two high shear speeds; 0.01 and 0.1 m/s. The thickness of the intermetallic compound(IMC) layer was decreased with increasing Zn content in Sn-0.7Cu-xZn solder. The highest shear strength was 3.47 N at the Zn content of 0.5 wt.%. As a whole, the shear strength at condition of 0.1 m/s was higher than that of 0.01 m/s because of impact stress. Fracture energies were calculated by F-x (Force-displacement) curve during high speed shear test and the tendency of fracture energy and that of shear strength were good agreement each other. Fracture took place within solder matrix at lower Zn content, and fracture occured near the interface of OSP surface finished Cu electrode and solder at higher Zn content.

Mechanical Properties of Cu and Ni Dissimilar Welds by High Welding Speed Using Single-Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 Cu 와 Ni의 고속도 이종재료 용접부의 기계적 특성)

  • Lee, Su-Jin;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.81-88
    • /
    • 2014
  • As the industrial technology has been developed, a dissimilar welding has been received huge attention in various engineering fields. To understand the mechanical properties and possibility of applications of dissimilar metals joining, the laser welding of Cu and Ni dissimilar metals was studied in this paper. Cu and Ni have differences in materials properties, and Cu and Ni make no intermetallic compounds according to typical binary phase of Cu and Ni system. In this study, lap welds of Cu and Ni dissimilar metals using single-mode fiber laser with high welding speed were tried, and mechanical properties of the welds zone were evaluated using a Vickers hardness test and a tensile shear test. To recognize the relation between hardness and tensile shear load, weld fusion zone of interface weld area were observed. And it was confirmed that the ultra-high welding speed could make good weld beads and higher hardness parts had higher tensile shear load under the all conditions.

Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 1. Effects of thickness and roughness of electroless Ni-P deposit (ENEPIG 표면처리에서의 Sn-Ag-Cu 솔더조인트 신뢰성: 1. 무전해 Ni-P도금의 두께와 표면거칠기의 영향)

  • Huh, Seok-Hwan;Lee, Ji-Hye;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2014
  • By the trends of electronic package to be smaller, thinner and more integrative, the reliability of interconnection between Si chip and printed circuit board is required. This paper reports on a study of high speed shear energy of Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder joints with different the thicknesses of electroless Ni-P deposit. A high speed shear testing of solder joints was conducted to find a relationship between the thickness of Ni-P deposit and the brittle fracture in electroless Ni-P deposit/SAC405 solder. A focused ion beam (FIB) was used to polish the cross sections to reveal details of the microstructure of the fractured pad surface with and without $HNO_3$ vapor treatment. The high speed shear energy of SAC405 solder joint with $1{\mu}m$ Ni-P deposit was found to be lower without $HNO_3$ vapor, compared to those of over $3{\mu}m$ Ni-P deposit. This could be due to the edge of solder resist in $1{\mu}m$ Ni-P deposit, which provides a fracture location for the weakened shear energy of solder joints and brittle fracture in high speed shear test. With $HNO_3$ vapor, the brittle fracture mode in high speed shear test decreased with increasing the thickness of Ni-P deposit. Then the roughness (Ra) of Ni-P deposits decreased with increasing its thickness. Thus, this gives the evidence that the decrease in roughness of Ni-P deposit for Eelectroless Ni/ Electroless Pd/ Immersion Au (ENEPIG) surface play a critical role for improving the robustness of SAC405 solder joint.

Effect of Reflow Number and Surface Finish on the High Speed Shear Properties of Sn-Ag-Cu Lead-free Solder Bump (리플로우 횟수와 표면처리에 따른 Sn-Ag-Cu계 무연 솔더 범프의 고속전단 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.11-17
    • /
    • 2009
  • The drop impact reliability comes to be important for evaluation of the life time of mobile electronic products such as cellular phone. The drop impact reliability of solder joint is generally affected by the kinds of pad and reflow number, therefore, the reliability evaluation is needed. Drop impact test proposed by JEDEC has been used as a standard method, however, which requires high cost and long time. The drop impact reliability can be indirectly evaluated by using high speed shear test of solder joints. Solder joints formed on 3 kinds of surface finishes OSP (Organic Solderability Preservation), ENIG (Electroless Nickel Immersion Gold) and ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) was investigated. The shear strength was analysed with the morphology change of intermetallic compound (IMC) layer according to reflow number. The layer thickness of IMC was increased with the increase of reflow number, which resulted in the decrease of the high speed shear strength and impact energy. The order of the high speed shear strength and impact energy was ENEPIG > ENIG > OSP after the 1st reflow, and ENEPIG > OSP > ENIG after 8th reflow.

  • PDF

Shearing Characteristics of Sn3.0AgO.5Cu Solder Ball for Standardization of High Speed Shear Test (고속전단시험의 표준화를 위한 Sn3.0Ag0.5Cu 솔더볼의 전단특성)

  • Jung, Do-Hyun;Lee, Young-Gon;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • Shearing characteristics of Sn-3.0wt%Ag-0.5wt%Cu ball for standardization of high speed shear test were investigated. The solder ball of 450 ${\mu}m$ in diameter was reflowed at $245^{\circ}C$ on FR4 PCB (Printed Circuit Board) to prepare a sample for the high-speed shear test. The metal pads on the PCB were OSP (Organic Solderability Preservative, Cu pad) and ENIG (Electroless Nickel/Immersion Gold, i.e CulNi/Au). Shearing speed was varied from 0.5 to 3.0 m/s, and tip height from 10 to 135 ${\mu}m$. As experimental results, for the OSP pad, a ductile fracture increased with tip height, and it decreased with shearing speed. In the case of ENIG pad, the ductile fracture increased with the tip height. The tip height of 10 ${\mu}m$ (2% of solder ball diameter) was unsuitable since the fracture mode was mostly pad lift. Shear energy increased with increasing shearing tip height from 10 to 135 ${\mu}m$ for both of OSP and ENIG pads.

The Static Structural Design and Test of High Speed Propeller Blade (고속 프로펠러 블레이드 정적 구조 설계 및 시험)

  • Park, Hyun-Bum;Choi, Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2014
  • The recent high speed propeller with blade sweep is required to have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Shear-Rate Dependent Ring-Shear Characteristics of the Waste Materials of the Imgi Mine in Busan (부산 임기광산 광미의 전단속도에 따른 링 전단특성 연구)

  • Jeong, Sueng-Won;Ji, Sang-Woo;Yim, Gil-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.5-15
    • /
    • 2014
  • Abandoned mine deposits are exposed to various physico-chemical geo-environmental hazards and disasters, such as acid mine drainage, water contamination, erosion, and landslides. This paper presents the ring shear characteristics of waste materials. The ring shear box with a rotatable O-ring was used in this study. Three tests were performed: (i) Shear stress-time relationship for given normal stress and shear speed, (ii) shear stress as a function of shear speed, and (iii) shear stress as a function of normal stress. For a given normal stress (50 kPa) and speed (0.1 mm/sec), the materials tested exhibit a strain softening behavior, regardless of drainage condition. The peak and residual shear stresses were determined for each normal stress and shear speed. The shear stress was measured when shear speed is equal to 0.01, 0.1, 1, 10, 50, 100 mm/sec or when normal stress is equal to 20, 40, 60, 80, 100, 150 kPa. From the test results, we found that the shear stress increases with increasing shear speed. The shear stress also increases with increasing normal stress. However, different types of shearing mode were observed in drained and undrained conditions. Under drained condition, particle crushing was observed from the shearing zone to the bottom of lower ring. Under undrained condition, particle crushing was observed only at the shearing zone, which has approximately 1 cm thick. It means that a significant high shear speed under undrained condition can result in increased landslide hazard.

Effects of PCB Surface Finishes on Mechanical Reliability of Sn-1.2Ag-0.7Cu-0.4In Pb-free Solder Joint (PCB 표면처리에 따른 Sn-1.2Ag-0.7Cu-0.4In 무연솔더 접합부의 기계적 신뢰성에 관한 연구)

  • Kim, Sung-Hyuk;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.57-64
    • /
    • 2012
  • Ball shear test was performed by test variables such as loading speed and annealing time in order to investigate the effect of surface finishes on the bonding strength of Sn-1.2Ag-0.7Cu-0.4In Pb-free solder. The shear strength increased and the ductility decreased with increasing shear speed. With increasing shear speed, the electroless nickel immersion gold (ENIG) finish showed dominant brittle fracture mode, while organic solderability preservative (OSP) finish showed pad open fracture mode. The shear strength and toughness for both surface finishes decreased with increasing annealing time under the high-speed shear test of 500 mm/s. Typically, the thickness of intermetallic compound increased with increasing annealing time, which means that exposure of brittle fracture became much easier. With increasing annealing time, the both ENIG and OSP finishes exhibited the pad open fracture mode. Overall, ENIG finish showed higher shear strength rather than OSP finish due to its superior barrier stability.

Estimation of Soft Ground Characteristics using the Piezo-Cone Penetration Tests(CPTu) on Honam High-Speed Railway Planning Line (호남고속철도 계획노선에서의 피에조콘 관입시험(CPTu)에 의한 연약지반 특성 평가)

  • Lee, Il-Wha;Kwon, Oh-Jung;Kwen, Jin-Su;Min, Kyoung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1796-1801
    • /
    • 2007
  • Piezocone penetration testing(CPTu) results such as cone resistance$(q_c)$, sleeve friction$(f_s)$, and pore pressure(u), have been carried out at 5 sites in Honam high-speed railway areas of Korea, in order to continuously estimate the characteristics of soil layers and the undrained shear strength$(S_u)$ in a soft ground. For the applications of the conventional CPTu results to undrained shear strength, the cone factors$(N_{kt})$ were deduced based on Field vane tests, and Monte-Carlo Simulation(MCS). Moreover the correlations of the undrained shear strength of CPTu by soil depths were compared and revised with the results of triaxial compression(UU test), field vane and Dilatometer tests(DMT). The depths of soft foundation at 5 sites in Honam high-speed railway areas were calculated based on the results of the various field tests in addition CPTu. The applicability of CPTu for a soft foundation criterion referred to the criteria of high-speed railway and related agencies in Korea was evaluated.

  • PDF

Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

  • Erdemir, Ugur;Sancakli, Hande Sar;Sancakli, Erkan;Eren, Meltem Mert;Ozel, Sevda;Yucel, Taner;Yildiz, Esra
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.434-443
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS. A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of $6mm{\times}4mm$ and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with $30{\mu}m$ silica oxide particles ($Cojet^{TM}$ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at ${\alpha}=.05$. RESULTS. Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION. Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used.