• Title/Summary/Keyword: High Speed Digital Camera

Search Result 92, Processing Time 0.038 seconds

Development of Digital Holographic Microscopy System for Measurements of Particle Velocities in MR Fluids (MR 유체 입자 속도 계측을 위한 디지털 홀로그래피 현미경 시스템의 개발)

  • Chen, He-Peng;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • In this study digital holographic microscopy system for measurements of 3-D velocities of particles in MR fluid is developed. Holograms are recorded using either a CCD camera with a double pulse laser or a high-speed camera with a continuous laser. To process recorded holograms, the correlation coefficient method is used for focal plane determination of particles. To remove noise and improve the quality of holograms and reconstructed images, a Wiener filter is adopted. The two-threshold and image segmentation methods are used for binary image transformation. For particle pairing, the match probability method is adopted. The developed system will be applied to measurements of the characteristics of unsteady 3-D particle velocities in MR fluids through the next stage of this study.

Measurement of 3D Flow inside Micro-tube Using Digital Holographic PTV Technique (디지털 Holographic PTV기법을 이용한 미세튜브 내부 3차원 유동장 측정)

  • Kim, Seok;Kim, Ju-Hee;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.177-178
    • /
    • 2006
  • Digital holographic particle tracking velocimetry (HPTV) is developed by single high-speed camera and single continuous laser with long coherent length. This system can directly capture 4000 hologram fringe images for 1 second through a camera computer memory. The 3D particle location is made of the reconstruction by using a computer hologram algorithm. This system can successfully be applied to instantaneous 3D velocity measurement in the water flow inside a micro-tube. The average of 100 instantaneous velocity vectors is obtained by reconstruction and tracking with the time of evolution of recorded fringes images. In the near future, we will apply this technique to measure 3D flow information inside various micro structures.

  • PDF

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2058-2065
    • /
    • 2004
  • A light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames to obtain the flame propagation speed in freely falling droplet suspension produced by an ultrasonic atomizer. Two MICRO probes are used to monitor time-series signals of OH chemiluminescence from two different locations in the flame. By detecting the arrival time difference of the propagating flame front, the flame propagation speed is calculated with a two-point delay-time method. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the two-point delay-time method by the MICRO system. Furthermore, the relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with three different experimental conditions by changing the fuel injection rate. It was confirmed that the two-point delay-time method with two MICRO probes is useful and convenient to obtain the flame propagation speed and that the flame propagation speed depends on the spray properties.

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames (불꽃점화 구형분무화염에서 고공간 분해능을 가진 집광프로브의 응용)

  • Yang Young-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.20-25
    • /
    • 2004
  • In order to obtain the flame Propagation speed in freely falling droplet suspension Produced by an ultrasonic atomizer, a light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames. Two MICRO probes are used to monitor time-series signals of OH chemilumine-scence from two different locations in the flame. The flame propagation speed is calculated by detecting the arrival time difference of the propagating flame front. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the MICRO system. Furthermore, relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with k different experimental conditions by changing the fuel injection rate. It was confirmed that the MICRO probe system was very useful and convenient to obtain the flame propagation speed and that the flame propagation speed was different depending on the spray properties.

Development of a Dynamic PIV System for Turbulent Flow Analysis (난류유동 해석을 위한 Dynamic PIV 시스템의 개발)

  • Lee Sang-Joon;Jang Young-Gil;Kim Seok
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.71-77
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields are essential for physical understanding of a complicated turbulent flow. Due to advances of high-speed imaging technique, laser and electronics, high-speed digital cameras and high-repetition pulse lasers are commercially available in nowadays. A dynamic PIV system that can measure consecutive instantaneous velocity field with 1K$\times$ 1K pixels resolution at 1 fps was developed. It consists of a high-speed CMOS camera and a high-repetition Nd:YLF pulse laser. Theoretically, it can capture velocity fields at 20 fps with a reduced spatial resolution. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet of which Reynolds number is about 3000. The particle images of 1024$\times$512 pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

Development of Rail Profile Measurement System using High Speed Laser Image Processing (고속영상처리에 의한 레일형상측정시스템 개발)

  • Moon, Chul-Yi;Kim, Man-Chul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1320-1325
    • /
    • 2006
  • Railway track supports and guides train and it directly affects ride quality and safety. To maintain track quality, regular maintenance activity is essential but it degrades track usage since maintenance activity occupies the track during the work. To achieve maximum track efficiency, track inspection should be performed at commercial running speed. In this paper, we designed and developed high speed rail profile measurement system using laser light sectioning method with line laser generator, digital camera and DSP based image processing system. The measurement system can supports rail profile measurement at the speed of 300 Km/h that can be applied to KTX.

  • PDF

NEW DIGITAL H$\alpha$ OBSERVATION BY SOLAR FLARE TELESCOPE AT BOAO

  • LEE C.-W.;MOON Y.-J.;PARK Y.D.;JANG B.-H.;KIM KAP-SUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.2
    • /
    • pp.111-117
    • /
    • 2001
  • Recently, we have set up a new digital CCD camera system, MicroMax YHS-1300 manufactured by Roper Scientific for Ha observation by Solar Flare Telescope at Bohyunsan Optical Astronomy Observatory. It has a 12 bit dynamic range, a pixel number of 1300$\times$1030, a thermoelectric cooler, and an electric shutter. Its readout speed is about 3 frames per second and the dark current is about 0.05 e-/p/s at $-10^{\circ}C$. We have made a system performance test by confirming the system linearity, system gain, and system noise that its specification requires. We have also developed a data acquisition software which connects a digital camera con-troller to a PC and acquires H$\alpha$ images via Microsoft Visual C++ 6.0 under Windows 98. Comparisons of high quality H$\alpha$ images of AR 9169 and AR 9283 obtained from SOFT with the corresponding images from Learmonth Solar Observatory in Australia confirm that our H$\alpha$ digital observational system is performed properly. Finally, we present a set of H$\alpha$ images taken from a two ribbon flare occurred in AR 9283.

  • PDF

Measurement of 3-D Flow inside a Micro Curved-tube using Digital Micro Holographic Particle Tracking Velocimetry (디지털 Micro Holographic PTV기법을 이용한 미세 곡관 내부 3차원 유동 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2579-2584
    • /
    • 2007
  • A digital micro holographic particle tracking velocimetry (HPTV) system consisting of a high-speed camera and a single laser with acoustic optical modulator (AOM) chopper was established. The digital micro HPTV system was applied to water flow in a micro curved-tube for measuring instantaneous 3-D velocity field data consecutively. The micro curved-tube is using to reproduce the dorsal aorta or utilize in various lap-on-a-chip. The temporal evolution of a three-dimensional water flow in the micro curved-tube (the curvature, ${\kappa}$=1/${\phi}$, 2/${\phi}$, 4/${\phi}$, 8/${\phi}$) of 100 ${\mu}m$ and 300 ${\mu}m$ inner diameters was obtained and mean velocity field distribution was obtained by statistical-averaging the instantaneous velocity fields.

  • PDF

System Implementation for Generating High Quality Digital Holographic Video using Vertical Rig based on Depth+RGB Camera (Depth+RGB 카메라 기반의 수직 리그를 이용한 고화질 디지털 홀로그래픽 비디오 생성 시스템의 구)

  • Koo, Ja-Myung;Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.964-975
    • /
    • 2012
  • Recently the attention on digital hologram that is regarded as to be the final goal of the 3-dimensional video technology has been increased. A digital hologram can be generated with a depth and a RGB image. We proposed a new system to capture RGB and depth images and to convert them to digital holograms. First a new cold mirror was designed and produced. It has the different transmittance ratio against various wave length and can provide the same view and focal point to the cameras. After correcting various distortions with the camera system, the different resolution between depth and RGB images was adjusted. The interested object was extracted by using the depth information. Finally a digital hologram was generated with the computer generated hologram (CGH) algorithm. All algorithms were implemented with C/C++/CUDA and integrated in LabView environment. A hologram was calculated in the general-purpose computing on graphics processing unit (GPGPU) for high-speed operation. We identified that the visual quality of the hologram produced by the proposed system is better than the previous one.

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 김도훈;유원재;박낙규;강영준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.255-259
    • /
    • 2003
  • Moire topography method isa well-known non-contacting 3-D measurement method as afast non-contact test for three-dimension shape measuring method. Recently, it's important to study the automatic three-dimension measurement by moire topography because it is frequently applied to the reverse engineering , the medical , the entertainment fields. Three-dimension measurement using projection of moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, the classical moire method is computerized-so called digital moire when a virtual grating pattern is projected on a surface, the captured image by the CCD camera has three-dimension information of the objects. The moire image can be obtained through a simple image processing and a reference grating pattern. and it provides similar results without physical grating pattern. digital projection moire topography turn out to be very effective for the three-dimension measurement of objects. Using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the four-three step algorithm method instead of the same step in the phase shifting of different pitch.

  • PDF