• Title/Summary/Keyword: High Speed Coupling

Search Result 211, Processing Time 0.033 seconds

Dynamic analysis of high-speed railway train-bridge system after barge collision

  • Xia, Chaoyi;Ma, Qin;Song, Fudong;Wu, Xuan;Xia, He
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • In this paper, a framework is proposed for dynamic analysis of train-bridge systems with a damaged pier after barge collision. In simulating the barge-pier collision, the concrete pier is considered to be nonlinear-inelastic, and the barge-bow is modeled as elastic-plastic. The changes of dynamic properties and deformation of the damaged pier, and the additional unevenness of the track induced by the change of deck profile, are analyzed. The dynamic analysis model for train-bridge coupling system with a damaged pier is established. Based on the framework, an illustrative case study is carried out with a $5{\times}32m$ simply-supported PC box-girder bridge and the ICE3 high-speed train, to investigate the dynamic response of the bridge with a damaged pier after barge collision and its influence on the running safety of high-speed train. The results show that after collision by the barge, the vibration properties of the pier and the deck profile of bridge are changed, forming an additional unevenness of the track, by which the dynamic responses of the bridge and the car-body accelerations of the train are increased, and the running safety of high-speed train is affected.

Analysis of Interior Noise of High Speed EMU by using SEA (동력 분산형 고속철도 차량의 실내소음 해석 : SEA 응용)

  • Kim, Tae-Min;Kim, Jeung-Tae;KIm, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.970-978
    • /
    • 2010
  • In this study, interior noise of the high speed EMU was estimated by statistical energy analysis (SEA) method. Based on the data measured at a distance of 25m from a running train, exterior noise of the running train was calculated. And then it was designed as noise sources in VA ONE, a commercial software of SEA. coupling and damping loss factor of high speed EMU studied in previous studies is used. The interior noise of the train was estimated for a open-land section. The analysis of interior noise of HST in the tunnel section will be estimated through same method.

  • PDF

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

A Study on the Stability of Geared Systems Subjected to Torsional and Lateral Instability (비틀림진동 및 행진동을 받는 기어시스템의 안정화에 관한 연구)

  • Ro, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.103-114
    • /
    • 1990
  • Many high speed mechanical systems incorporate gearing for speed reduction. This study investigates the stability of mulit-rotor geared systems supported on oil film bearings taking into consideration the coupling between torsional and lateral dynamics. The emphasis of the study is on the analysis of the interaction between the combined torsional and whirl insta- bilities. The feasility of inducing a lateral and the torsional instability to neutralize an anticipated unstable condition is investigated. The possibility of suppressing the instabilities by controlling the parameters of the oil film bearings is also considered.

  • PDF

A Study on Coupling Coefficient Between Rail and Reinforcing Bars in Concrete Slab Track (콘크리트 슬래브궤도에서 레일과 철근 사이의 결합계수에 대한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.405-411
    • /
    • 2009
  • Railway signaling system in a rapid transit using the ATC system the approved a speed limit to a train and a part of signaling system in a metro approved a distance which is possible to move. Referring to the way of transmitting train control information, there are the one transmitting it to the on-board system of a train using the direct track, the another transmitting it establishing an instrument, and the other transmitting an instrument by a railway track. The one is the method using the direct track as a conductor for composing the part of the track and attaining the information controlling a train by transmitting a signal to the track. It is used for the high-speed railway and the subway. The method using the track attains information by transmitting it to returned information, and the on-board system of a train attains it by magnetic coupling. Because many reinforcing bars on the concrete slab track are used, interaction between a rail and a reinforcing bar that is not produced on ballast track is made. Due to the interaction, the electric characteristic of rail is changed. In the current paper, we numerically computed the coupling coefficient between the rail and the reinforcing bar based on the concrete slab track throughout the model related to the rail and the reinforcing bar using the concrete slab track that is used in the second interval of the Gyeongbu high-speed railway, and we defined the coupling coefficient not changed in the electric characteristic of rail in the condition that there is no interaction between the rail and the reinforcing bar.

Analysis of Electromagnetic Forming Using Sequential Electromagnetic-Mechanical Coupled Simulations (순차적 전자기-구조 연성해석을 통한 전자기성형 공정 해석)

  • Kim, J.;Noh, H.G.;Ko, S.J.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.441-446
    • /
    • 2012
  • A sequential coupled field analysis of electromagnetic free bulging was performed by using FEM. A 2D axi-symmetric electromagnetic model based on the magnetic vector potential is proposed for the calculation of magnetic field and Lorentz's forces. The Newmark integration method is used to calculate the transient dynamic plastic deformation of sheet during free bulging. In the finite element model, the effect of sheet deformation on the electromagnetic field analysis is taken into consideration. In order to confirm the sequential electromagnetic-mechanical coupling analysis, an experiment with an electromagnetic forming apparatus was conducted. The results showed that the final bulge height of the sheet predicted from the proposed method is in good agreement with experimentally measured height.

Adaptive Cross-Coupling Controller for Precision Contour Machining (정밀 윤곽가공을 위한 적응 교차축 연동제어기)

  • 윤상필;지성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. In addition, a real-time federate adaptation scheme is included in the proposed CCC to regulate cutting force. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy and regulates cutting force more effectively than the existing method.

  • PDF

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes (비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC (모터분리형 초고속 머시닝센터 주축계의 열특성 해석)

  • 김석일;권태균;나상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF