• Title/Summary/Keyword: High Speed Coupling

Search Result 211, Processing Time 0.026 seconds

Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments (원형 고무 세그먼트를 갖는 탄성 커플링의 동특성과 적응성)

  • Lee, D.C.;Kim, J.K.;Nam, T.K.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.90-95
    • /
    • 2008
  • Medium and high speed marine diesel engines have been widely used as prime mover in small car ferries and fishing vessels with reduction gear. These propulsion shafting system should be installed and matched the elastic coupling between engine and reduction gear to isolate the vibratory torque. In this paper, the elastic dynamic characteristics of coupling with rubber type circular segments is confirmed by the theoretical analysis using the FEM and the hydraulic exciting test at shop. And its adaptation is investigated in the torsional vibration test in factory shop.

  • PDF

Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments (원형 고무 세그먼트를 갖는 탄성커플링의 동특성과 적응성)

  • Lee, D.C.;Barro, Ronald D;Kim, J.K.;Nam, T.K.;Yu, J.D.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.346-351
    • /
    • 2011
  • Medium and high speed marine diesel engines with reduction gear have been widely used as prime mover in small car ferries and fishing vessels. The elastic coupling should be installed and complemented the propulsion shafting system to isolate the vibratory torque between engine and reduction gear. In this paper, the dynamic characteristics of elastic coupling with rubber type circular segments is confirmed by theoretical analysis using the FEM and the hydraulic excitation test at shop. Further adaptation was investigated with the torsional vibration test at diesel engine factory shop.

Thermal Characteristics Analysis of a High-Speed Motor-Separated Spindle System Using Oil-Jet Lubrication Method (오일-제트 윤활 방식의 모터 분리형 초고속 주축계의 열 특성 해석)

  • 김석일;김기태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • This paper presents the thermal characteristics analysis of a high-speed motor-separated spindle system consisted of angular contact ball bearings and built-in motor with oil-jet lubrication. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

Robust servo control of high speed optical disk drives (고속 광 디스크 드라이브의 강인 서보제어)

  • 임승철;정태영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.438-444
    • /
    • 1997
  • Recently, optical disk drives are increasingly demanded to have higher speed as well as high information density, especially for applications like CD-ROM drives. To this end, improvement of their optical pick-up structure and control is recognized the very challenging issue. In this paper, the 2-D motion of the pick-up is first analytically modelled to identify the cause and effect of the troublesome cross coupling between auto-focusing and tracking directions. Subsequently, the overall system equations are derived to include the dynamics of the related components in the auto-focusing servo system. While its unmeasurable parameters being estimated by the least square error method, a simple but decent linear model can be obtained within its operating frequency range. To design the high speed and robust positional servo controller, the design specifications are detailed and H$\sub$.inf./ control method is employed based on the simple model. Using the pickup in a commercial 8 fold speed CD-ROM drive as an example, performance of the designed controller is verified by realtime experiments.

  • PDF

Quantitative Evaluation of Energy Coupling between Quasi-Periodic Substorms and High-Speed Coronal Streams (준 주기적인 서브스톰과 고속 태양풍 사이의 에너지 결합에 대한 정량적 평가)

  • Park, M.Y.;Lee, D.Y.;Kim, K.C.;Choi, C.R.;Park, K.S.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • It has been known that high-speed solar wind streams associated with coronal holes lead to quasi-periodic substorms that occur approximately every $2{\sim}4$ hours. In this paper we examined 222 repetitive substorms that occurred during high-speed stream periods in July through December in 2003 to quantitatively determine a range of energy input from the solar wind into the magnetosphere between two consecutive substorms. For this study, we have used the Akasofu ${\varepsilon}$-parameter to time-integrate it for the interval between two consecutive substorms, and have applied this method to the 222 substorms. We find that the average amount of solar wind input energy between two adjacent substorms is $1.28{\times}10^{14}J$ and about 85% out of the 222 substorms occur after an energy input of $2{\times}10^{13}{\sim}2.3{\times}10^{14}J$. Based on these results, we suggest that it is not practical to predict when a sub storm will occur after a previous one occurs purely based on the solar wind-magnetosphere energy coupling. We provide discussion on several possible factors that may affect determining substorm onset times during high-speed streams.

Numerical Analysis and Design of Moving Contactless High Power Transformer

  • Lee, Dong-Su;Jang, Dong-Uk;Kim, Hyung-Chul;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.423-426
    • /
    • 2011
  • This paper presents numerical analysis and design of high power contactless transformer with a large air-gap for moving on a guided linear track which is appropriate for high-speed train or MAGLEV. The system has the typical characteristics of large leakage inductance, small magnetizing inductance, and low coupling coefficients giving rise to lower power transfer efficiency, which have been compensated by the purposely-designed contactless transformer coupled with the resonant converter modulating with high switching frequency. In particular, the best model selected from the generated six design candidates has been applied for 3D Finite Element Analysis (FEA) investigating on iron loss to evaluate the overall system efficiency.

Thermal Characteristics Analysis of a High-Speed HMC (초고속 수평형 머시닝센터의 열특성 해석)

  • 김석일;성하경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.221-226
    • /
    • 2002
  • This paper presents the thermal characteristics analysis of a high-speed HMC(horizontal machining center) with spindle speed of 30,000rpm and fried rate of 40m/min. The spindle speed is achieved by introducing angular contact ball bearings, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is a motor-separated type composed of the main spindle and sub-spindle which are mechanically connected by the flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front to and rear bearings of the sub-spindle. The thermal analysis model of HMC is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to spindle speed and feed rate.

  • PDF

Analysis of Crosstalk-Induced Variation of Coupling Capacitance between Interconnect lines in High Speed Semiconductor Devices (고속 반도체 소자에서 배선 간의 Crosstalk에 의한 Coupling Capacitance 변화 분석)

  • Ji Hee-Hwan;Han In-Sik;Park Sung-Hyung;Kim Yong-Goo;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.47-54
    • /
    • 2005
  • In this paper, novel test patterns and on-chip data are presented to indicate that the variation of coupling capacitance, ${\Delta}Cc$ by crosstalk can be larger than static coupling capacitance, Cc. It is also shown that ${\Delta}Cc$ is strongly dependent on the phase of aggressive lines. for anti-phase crosstalk ${\Delta}Cc$ is always larger than Cc while for in-phase crosstalk ${\Delta}Cc$ is smaller than Cc. HSPICE simulation shows good agreement with the measurement data.

Reduction Gear Stability Estimation due to Torque Variation on the Marine Propulsion System with High-speed Four Stroke Diesel Engine (고속 4행정 디젤엔진을 갖는 선박 추진시스템에서 토크변동에 의한 감속기어 안정성 평가)

  • Kim, InSeob;Yoon, Hyunwoo;Kim, Junseong;Vuong, QuangDao;Lee, Donchool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.815-821
    • /
    • 2015
  • Maritime safety has been more critical recently due to the occurrence of shipboard accidents involving prime movers. As such, the propulsion shafting design and construction plays a vital role in the safe operation of the vessel other than focusing on being cost-efficient. Smaller vessels propulsion shafting system normally install high speed four-stroke diesel engine with reduction gear for propulsion efficiency. Due to higher cylinder combustion pressures, flexible couplings are employed to reduce the increased vibratory torque. In this paper, an actual vibration measurement and theoretical analysis was carried out on a propulsion shafting with V18.3L engine installed on small car-ferry and revealed higher torsional vibration. Hence, a rubber-block type flexible coupling was installed to attenuate the transmitted vibratory torque. Considering the flexible coupling application factor, reduction gear stability due to torque variation was analyzed in accordance with IACS(International Association of Classification Societies) M56 and the results are presented herein.

Design of Hot Heading Process and Evaluation of Mechanical Properties of Alloy718 Coupling Bolt for Gas Turbine (가스터빈용 Alloy718 커플링볼트의 열간 헤딩 공정설계 및 기계적 특성 평가)

  • Choi, H.S.;Lee, J.M.;Ko, D.C.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • Alloy718 is the nickel-base super alloy well used as gas turbine components under severe operating conditions because of its high strength at high temperature and excellent creep resistance. In this study, a coupling bolt for the gas turbine component is manufactured by hot heading process instead of whole machining in order to improve the mechanical properties. Die shape for the hot heading has been designed by general design rule of hot forging and also optimal process condition has been investigated by finite element method. The initial billet temperature and the punch speed have been determined by $1150^{\circ}C$ and 600mm/s on the basis of finite element analysis, respectively. The coupling bolt has been manufactured by 200ton screw press and evaluated by experiment in order to investigate the mechanical properties. As a result of experiment, the mechanical properties such as hardness, tensile strength and creep behavior have been superior to those manufactured by machining.