• Title/Summary/Keyword: High Resolution Aerial Images

Search Result 174, Processing Time 0.02 seconds

Vegetation Classification using KOMPSAT-2 Imagery and High-resolution airborne imagery in Urban Area (KOMPSAT-2 영상 및 고해상도 항공영상을 이용한 도심지역 식생분류)

  • Park, Jeong Gi;Go, Shin Young;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.21-27
    • /
    • 2013
  • Recently, It is increasing that importance of systematic management by carbon sinks in forest resources. Especially, in terms of social, Forest resources in urban areas are important role as well as carbon sinks, and improvement of the natural environment of the city. In this study, through ANOVA analysis that a total of nine different vegetation index from rearranged NIR band of images to Forest tree species classified in urban areas using high-resolution aerial images and satellite images of KOMPSAT-2. And various vegetation indices such as NDVI are divided a species by forest units through statistical analysis. Also, separated species are compared to forest type map by the Forest Service. As a result, it is built as basis for vegetation management in urban areas.

Improvements on the Three-Dimensional Positioning of High Resolution Stereo Satellite Imagery (고해상도 스테레오 위성영상의 3차원 정확도 평가 및 향상)

  • Jeong, In-Jun;Lee, Chang-Kyung;Yun, Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.617-625
    • /
    • 2014
  • The Rational Function Model has been used as a replacement sensor model in most commercial photogrammetric systems due to its capability of maintaining the accuracy of the physical sensor models. Although satellite images with rational polynomial coefficients have been used to determine three-dimensional position, it has limitations in the accuracy for large scale topographic mapping. In this study, high resolution stereo satellite images, QuickBird-2, were used to investigate how much the three-dimensional position accuracy was affected by the No. of ground control points, polynomial order, and distribution of GCPs. As the results, we can confirm that these experiments satisfy the accuracy requirements for horizontal and height position of 1:25,000 map scale.

Spectrum Analysis and Detection of Ships Based on Aerial Hyperspectral Remote Sensing Experiments (항공 초분광 원격탐사 실험 기반 선박 스펙트럼 분석 및 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.214-223
    • /
    • 2024
  • The recent increase in maritime traffic and coastal leisure activities has led to a rise in various marine accidents. These incidents not only result in damage to human life and property but also pose a significant risk of marine pollution involving oil and hazardous and noxious substances (HNS) spills. Therefore, effective ship monitoring is crucial for preparing and for responding to marine accidents. This study conducted an aerial experiment utilizing hyperspectral remote sensing to develop a maritime ship monitoring system. Hyperspectral aerial measurements were carried out around Gungpyeong Port in the western coastal region of the Korean Peninsula, and spectral libraries were constructed for various ship decks. The spectral correlation similarity (SCS) technique was employed for ship detection, analyzing the spatial similarity distribution between hyperspectral images and ship spectra. As a result, 15 ships were detected in the hyperspectral images. The color of each ship's deck was classified based on the highest spectral similarity. The detected ships were verified by matching them with high-resolution digital mapping camera (DMC) images. This foundational study on the application of aerial hyperspectral sensors for maritime ship detection demonstrates their potential role in future remote sensing-based ship monitoring systems.

Parcel Boundary Demarcation in Residential Area Using High Resolution Aerial Images (고해상도 항공영상을 이용한 주거지역 필지경계 설정에 관한 연구)

  • Park, Chiyoung;Lee, Jaeone
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.59-68
    • /
    • 2015
  • As part of an effort to leap smart cadastre system by doing rearrangement of various mismatches in the land register, the cadastre renovation project is being recently conducted. In response to this demand, this paper proposes an image-based rapid parcel boundary demarcation plan using the high resolution aerial image with a GSD (Ground Sample Distance) of 5cm that matches to real ground boundary situation in residential area. To review the feasibility and accuracy of this proposed methodology, we compared the accuracy of parcel boundary point and parcel area extracted from the digital stereo plotting on the basis of results of cadastral boundary surveying and land register over the selected two test areas. The comparative accuracy result of all boundary points by digital stereo plotting is satisfied with accuracy requirement according to the criteria of the enforcement regulation of cadastral surveying, whereas it exceeded allowable error of ${\pm}0.07m$, more strictly specified in the Special Act on Cadastral Renovation. And about 20% of the total 70 parcels extracted by digital plotting are out of area tolerance in Jecheon study area, and 10% of the total 19 parcels in Suwon study area. The parcels exceeding accuracy limit are mostly due to the occlusion caused by building roof or eaves, and the obstacles such as trees existing on the boundary. Furthermore, an object identification is impossible in image because of vague boundary reference in case of nonexistence of man-made structures or natural features. Therefore, the utilization of boundary identification stickers is recommended as a solution for these types of land parcel.

Update of Topographic Map using QuickBird Orthoimage (Quick Bird 정사영상을 이용한 지형도 갱신)

  • 이창경;우현권;정인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.295-301
    • /
    • 2004
  • Satellite captures images periodically and economically over the area wider than aerial photographs, and reconnaissance to unapproachable area. For these advantages, mapping using high resolution satellite image has high potentials of marketability and development. Therefore, utilization of satellite image in mapping and GIS is expected to be growing and research on describable feature, positional accuracy and, possible mapping scale is urgently needed. This research presented that Quick Bird orthoimage could be used to update digital map on a scale of 1:5,000. Quick Bird image was corrected geometrically based on ground control points. DEM was generated using height data of digital topographic map. The orthoimge was produced by digital differential rectification based on DEM which was generated using height data of digital topographic map(scale 1;5,000 and 1;1,000). When the digital topographic map was overlaid with the orthoimage, it was very easy to find changed region or new features builded after the map compiled.

  • PDF

Unit-load Method for the Estimation of Non-point Pollution Loads by Subcategorizing the Land-use Category Reflected in the National Land Register Data : A Case Study of Kyeongan Watershed in South korea (경안천 유역 지적공부에 나타난 특정지목의 토지이용 특성 세분화를 통한 비점오염 부하량 산정 개선방안)

  • Lee, Bum-Yeon;Lee, Chang-Hee;Ha, Do;Lee, Su-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.598-607
    • /
    • 2010
  • One of constraints in the application of unit-load method to estimate non-point pollution loads in the total water pollutant load management system (TWPLMS) is the limited numbers of applicable unit-loads. Since only 7 unit-loads are currently available for total 28 land-use categories in the national land register data, each unit-loads inevitably have to represent several land-use categories regardless of their actual land coverage characteristics. As a way to minimize the problem, this study suggested a nested application of the available unit-loads based on the analysis of high resolution aerial images taken in the Kyeongan watershed. Statistical analysis of three selected land-use categories such as school, apartment complex, and golf course showed that there exit significant (95% confidence level) relationships between the registered land-uses and actual land coverages. The school and apartment complex currently considered as 100% ground have only 65% and 80% of ground characteristics, respectively. Golf course, which is considered as 100% pasture, has about 5% of ground area. This indicates that the unit-load method using in TWPLMS can give over estimated non-point pollutant loads for the school and apartment complex (19.8~54.4%) but under estimation for the golf course (80.9%).

Research on Basic Investigation and Analysis for Iand Substitution Planing using High-resolution Satellite Imagery (환지계획 수립시 고해상 위성영상을 이용한 기초조사 및 분석에 관한 연구)

  • Choi, Seung Pil;Jeong, Cheol Ju;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.3-9
    • /
    • 2013
  • Various data like digital maps(1/1,000 or 1/5,000), field surveying, online materials and literatures are used for the preliminary investigation for urban development such as the feasibility evaluation, the profitability analysis, the zoning proposal, the zoning designation, and the land replotting planning. There are a couple of urban development methods like an expropriation, a replotting, a mixed-used method. The replotting method requires the consideration of land replotting types based on topography and building condition, which is not easy to gather data for the preliminary investigation maintaining the security of development planning. There are limitations of a preliminary investigation using aerial photos to detect topographic and building changes at specific period. GIS data combined with high-resolution imagery has advantages over the current dataset, which come from easy acquisition of various spatial resolution satellite images, wide swath coverage, the choice of imagery resolution satisfying a usage purpose, economic benefit comparing to aerial photos, and the calculation of distance and area on imagery from image modeling. For these reasons, the proposed method in this study enables to perform the more appropriate preliminary investigation using more accurate information.

The Optimal GSD and Image Size for Deep Learning Semantic Segmentation Training of Drone Images of Winter Vegetables (드론 영상으로부터 월동 작물 분류를 위한 의미론적 분할 딥러닝 모델 학습 최적 공간 해상도와 영상 크기 선정)

  • Chung, Dongki;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1573-1587
    • /
    • 2021
  • A Drone image is an ultra-high-resolution image that is several or tens of times higher in spatial resolution than a satellite or aerial image. Therefore, drone image-based remote sensing is different from traditional remote sensing in terms of the level of object to be extracted from the image and the amount of data to be processed. In addition, the optimal scale and size of data used for model training is different depending on the characteristics of the applied deep learning model. However, moststudies do not consider the size of the object to be found in the image, the spatial resolution of the image that reflects the scale, and in many cases, the data specification used in the model is applied as it is before. In this study, the effect ofspatial resolution and image size of drone image on the accuracy and training time of the semantic segmentation deep learning model of six wintering vegetables was quantitatively analyzed through experiments. As a result of the experiment, it was found that the average accuracy of dividing six wintering vegetablesincreases asthe spatial resolution increases, but the increase rate and convergence section are different for each crop, and there is a big difference in accuracy and time depending on the size of the image at the same resolution. In particular, it wasfound that the optimal resolution and image size were different from each crop. The research results can be utilized as data for getting the efficiency of drone images acquisition and production of training data when developing a winter vegetable segmentation model using drone images.

PROBABILISTIC LANDSLIDE SUSCEPTIBILITY AND FACTOR EFFECT ANALYSIS

  • LEE SARO;AB TALIB JASMI
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.306-309
    • /
    • 2004
  • The susceptibility of landslides and the effect of landslide-related factors at Penang in Malaysia using the Geographic Information System (GIS) and remote sensing data have been evaluated. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from Landsat TM (Thermatic Mapper) satellite images; and the vegetation index value from SPOT HRV (High Resolution Visible) satellite images. Landslide hazardous areas were analysed and mapped using the landslide-occurrence factors employing the probability-frequency ratio method. To assess the effect of these factors, each factor was excluded from the analysis, and its effect verified using the landslide location data. As a result, land 'cover had relatively positive effects, and lithology had relatively negative effects on the landslide susceptibility maps in the study area. In addition, the landslide susceptibility maps using the all factors showed the relatively good results.

  • PDF

Investigating Ways of Developed and Undeveloped Features from Satellite Images -Balancing Coastal Development and Preservation- (위성영상을 이용한 개발과 미개발 지역의 구분을 위한 탐색적 방법)

  • Yang, Byung-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • This research attempted to find possibilities of the practical use utilizing geospatial methods for the balanced promotion of sustainable coastal development and preservation through a case study of Jekyll Island, one of Georgia's barrier islands. In response, this research provided ways for practical use in sustainable development and preservation plans. First this research thoroughly investigated the 1996 master plan of Jekyll Island and tried to recalculate developed and undeveloped areas. Second, new estimations for developed areas were investigated through field survey. Third, this research proposed the use of the satellite images with different levels of spatial resolutions and tested different classification schemes to find possibilities for practical use. For these purposes, first, we classified developed and undeveloped features by manual digitization using an aerial photo image with 0.5m spatial resolution. Second, a Landsat 7 ETM+ and a QuickBird satellite images with mid- and high-levels of spatial resolutions were applied to identify developed and undeveloped areas using both the National Land Cover Data (NLCD) and the Coastal Change Analysis Program (CCAP) classification schemes. Also, GEOBIA (Geographic Object-Based Image Analysis) was conducted to accurately identify developed and undeveloped areas.