• Title/Summary/Keyword: High Rate WPAN

Search Result 84, Processing Time 0.018 seconds

A Deterministic Access Protocol in WiMedia Wireless Personal Area Networks (WiMedia 초고속 근거리 무선 통신에서의 결정적 접근 프로토콜)

  • Park, Hyun-Hee;Pack, Sang-Heon;Kim, Yong-Sun;Kang, Chul-Hee
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.7-17
    • /
    • 2009
  • WiMedia UWB technology is a fully distributed data communication technology developed for the application demanding a high data transmission rate in the wireless PAN area. In general, devices can send data either by reserving time slots or by using prioritized CSMA/CA. If the PCA protocol of prioritized CSMA/CA is used, they are suffered congestion as the number of devices increases. In this paper, we propose a Deterministic Access Protocol(DAP) in WiMedia WPANs. A DAP is a method to transmit data in the non-reserved DRP period without competition as each device informs the beacon order information in the beacon period and the queue information. In addition, the problem that the devices with a lower beacon slot number have more transmission opportunities is addressed by introducing the reference point. Simulation results are given to demonstrate that a DAP can improve the throughput and reduce the packet loss rate.

  • PDF

A Study on the Compensation Algorithm based on Error Rate Offset of Distance Measurement (거리측정의 오차비율 오프셋을 적용한 보정알고리즘 연구)

  • Choi, Chang-Yong;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.914-919
    • /
    • 2010
  • It is confirmed that as the distance measurements accuracy of the SDS-TWR(Symmetric Double-Sided Two-Way Ranging) based on CSS(Chirp Spread Spectrum) is considerably degraded due to frequency interference and it causes to severe errors in the localization applications. In this paper, the compensation algorithm based on error rate offset of distance measurement ($CA_d$) is proposed for the purpose to reduce the ranging errors due to by the SDS-TWR ranging problems. The $CA_d$ measures the distance values between two nodes by means of 1m interval about 1~25m distances in the SDS-TWR, and compensates the distance values using the parameters related to the distance compensation. From the experiments, it is analyzed that the $CA_d$. have reduced the distance error to average 95cm and maximum 526cm, and the distance error by the $CA_d$ was below about 60cm in the 25m distances. In particular, the performance of the distance measurements accuracy by the $CA_d$ is very high in LOS(Line Of Sight) environments.

Resource Management Scheme for Improvement of Reliability and Connectivity in wireless USB System (무선 USB 시스템에서 신뢰성과 연결성 향상을 위한 자원 관리 기법)

  • Kim, Jin-Woo;Jeong, Min-A;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1159-1166
    • /
    • 2014
  • In this paper, a resource management scheme for enhancing the network connectivity and reliability in wireless USB system is proposed. Wireless USB protocol is suitable for the application that supports the real-time multimedia service in Ship Area Network since it supports high speed data transfer. However, the device's mobility is caused the dramatic change of link state and network topology, and is occurred the degradation of network performance. Therefore, a resource management scheme for wireless USB system is proposed in this paper. The proposed technique can intelligently treat the change of link state, and solve the degradation of network performance. The simulation results show that proposed protocol can enhance the throughput and delay performance by selecting relay device with better link state.

Probabilistic Method to Enhance ZigBee Throughput in Wi-Fi Interference Environment (Wi-Fi 간섭 환경에서 ZigBee 전송률 향상을 위한 확률적 방법)

  • Lee, Sujin;Yoo, Younghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.606-613
    • /
    • 2014
  • The Internet of Things (IoT), which has recently attracted attention as next-generation IT industry, is based on a wired and wireless network platform that can connect various Things. However, it is challenging to implement the IoT platform because of the heterogeneity of the network. Particularly, the ZigBee transmission may be significantly harmed due to Wi-Fi with the relatively much higher power, and this is one of the reason making the platform implementation difficult. In this paper, the ZigBee transmission is measured and analyzed by the BEB algorithm for finding the slot time when ZigBee can transmit, and an actual transmission happens stochastically depending on the network environment. The simulation results show that it guarantees high success rate of the ZigBee transmission by overcoming Wi-Fi interference in the 2.4 GHz frequency band.