• Title/Summary/Keyword: High Pressure Pumping

Search Result 114, Processing Time 0.028 seconds

Analysis of Flow and Thermal Mixing Responses on Hot Water Discharge by Quencher Devices into an Annular Water pool (원환풀내에서 Quencher Device에 의한 고온수 분출로 일어나는 혼합유동에 관한 연구)

  • Choi, Seong-Seok;Kim, Jong-Bo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • One of the problems with the Boiling Water Reactor involves the flow and thermal mixings in the suppression water pool high pressure steam discharge into the pool in case of emergency core relief. Varioos heat sensitive devices and pumps for the reactor core cooling are installed in the middle of the suppression pool. Especially the pumps utilize pool water in order to cool the reactor core in emergency cases. In this case, the water temperature for the reactor cool ins should be below a certain temperature specified by the reactor design. In the present investigation, in other to determine the optimum locations of these pumping devices, numerical solutions have been obtained for the model to determine the f low mixing characteristics. Experimental investigations have also been carried out for the flow mixing and for the thermal mixing in the pool during the discharge. Considering that the discharge steam through the Quenching Device becomes hot water immediately in the water pool, the steam- equivalent hot water has been utilized. Examining these characteristices, it becomes possible to deform me the best locations for RCIC, LPCI , HPCI pumps in the suppression water pool for the emermency reactor core cooling.

  • PDF

A Study on Rheology Properties of High Performance Wet-mix Shotcrete (고성능 습식 숏크리트의 레올로지에 관한 기초연구)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Jin-Woung;Kim, Yong-Bin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.25-32
    • /
    • 2010
  • High performance shotcrete has been recently researched partly as a result of high consensus on high strength and durability. However, they are very initial step compared from the advanced countries. For instance, they has been mainly on high strength or durability without any consideration on pumpability and shootability which are very crucial on workability. The purpose of this dissertation was to make a high performance wet-mix shotcrete (high workability) which would solve the general problems of wet-mix process in Korea. For this, the main experimental variables were selected to be silica fume(0.0, 4.5, 9%), air entrained agent(0.0, 0.005%). Rheology with IBB rheometer was measured for evaluating pumpability and shootability as well as pump pressure, rebound rate and build-up thickness. The conclusions from a series of experiments were as follow: The results of analyzing the effects of AE agent and silica fume on rheology indicated that AE agent reduced both of flow resistance(G) and torque viscosity(H) and silica fume increased flow resistance (G) and reduced torque viscosity(H). An increase in the value of torque viscosity(H) produces an increase in the requried pumping pressure. These result indicated that the reduction of torque would work better at improving pumpability. And an increase flow resistance(G) improved shootability(increase build-up thickness and reduce rebound).

Rig Tester Development for the Performance Validation of a Piston Oil Cooling Gallery (피스톤 오일 냉각 유로의 성능 검증을 위한 리그 시험기 개발)

  • Chun, Sang-Myung;Lee, Jeong-Keun;Joo, Dae-Heon;Ryu, Kwan-Ho;Ha, Dae-Hong
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.387-398
    • /
    • 2009
  • The operation condition of recently designed pistons for high power and high speed diesel engine become more severe due to the increment of combustion pressure and temperature. So, in order to overcome high temperature, the application of the mono-metal cast aluminum alloy piston featuring an enclosed cast-in open cooling gallery has increased. In this research, it is developed a PCJ (piston cooling jet) rig tester, described the test procedure and validated the performance of sample piston cooling gallery design. Then the test rig will be used for developing the design technology of piston cooling gallery. The test rig is composed with oil reservoir and pumping system, oil jet system, piston fixing and moving system, collecting oil measuring system, and data measuring and recording system. It will be measured collecting efficiencies under conditions of a few piston positions, oil jet pressures and oil viscosities for a piston cooling gallery. Furthermore, the PCJ rig tester will be used for the optimum design of the oil cooling gallery which being applied to increase the cooling efficiency of pistons in diesel engines satisfying the EURO V emission regulation and the more.

Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016 (2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석)

  • Lee, Jae-Geun;Min, Gi-Hong
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.

Operatonal characteristics of the PLS linac vacuum system (PLS 선형가속기 진공계의 운전특성)

  • 김임경;박용정;김경렬;남궁원
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.269-277
    • /
    • 1996
  • The vacuum systems of PLS linac provides average pressure of $2.6\times 10^{-6}$Pa under high power microwave of 54 MW peak with 4.1 $\mu \textrm s$ pulse width and 10 Hz repetition rates. The base pressure of system is$2.4\times 10^{-6}$Pa with 45$^{\circ}C$ cooling water. The outgassing rate of the system is decreased from $3.0\times 10^{-11}Torr-l/sec-\textrm{cm}^2$ at the initial stage after installation to $1\times 10^{-12}Torr-l/sec-\textrm{cm}^2$ at present. Total accumulated microwave energy dose is about 140 GJ per module. All ion pumps are working under saturated regime and effective pumping speeds of 60 I/s, 230 I/s ion pumps are 45 I/s, 65 I/s, 140 I/s under the operating range. Main problems occurred in recent year are troubles of ion pump controller and vacuum gauge controller, vacuum leak of energy doubler window and electron gun ceramic, and water leak in the dummy load of acceleraing columns. Total of 41 troubles with 140. 8 hours down time give good system availability of 98%. Down time can be reduced by high power waveguide valves and water dummy loads under development, and then availability is expected to be increased up to 99.5%.

  • PDF

EDDC deposition system for 100m long superconducting coated conductor (100m 급 초전도선재 제조용 EDDC 증착시스템)

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Ko, Rock-Kil;Yang, Ju-Saeng;Kim, Tae-Hyung;Song, Kyu-Jeong;Ha, Dong-Woo;Park, Yu-Mi;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.18-19
    • /
    • 2005
  • EDDC(Evaporation using Drum in Dual Chamber) deposition system was manufactured for 100m long superconducting coated conductor. It is composed of reaction chamber, evaporation chamber and differential chamber. The drum is located across the differential and exposed to both of the evaporation chamber and the reaction chamber, and the tape is wound on the drum. The elements of superconducting material are co-evaporated from respective element boats in the evaporation chamber and deposited on the drum and reacted with oxygen in the reaction chamber. This process repeats by rotating the drum. When the total pressure of the reaction chamber was 5 mTorr, that of the evaporation chamber was $5{\sim}10^{-5}$Torr. This atmosphere can be achieved by means of differential pumping. There are four evaporator in the evaporation chamber. One is the radiation heating evaporator and the others are the high frequency induction evaporator. EDDC is one of promising methods for commercialization of superconducting coated conductor.

  • PDF

Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test (실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • Ballasted track on an asphalt roadbed can be beneficial for its various effects such as (i) decreasing of roadbed thickness by dispersing train load; (ii) prevention of both strength reduction and weakening in roadbed system by preventing rainwater penetration; and (iii) reducing maintenance cost by preventing roadbed mud-pumping and frostbite. With these beneficial effects, ballasted track on asphalt roadbed has been widely used in Europe and Japan, and relevant research for applying such ballasted track on asphalt roadbed systems in Korea is ongoing. In this study, full-scale static and dynamic train load tests were performed to compare the performance of ballasted track on asphalt roadbed and ballasted track. The optimum thickness levels of asphalt and reinforced roadbeds, corresponding to the design criteria for reinforced roadbed of high-speed railway, was estimated using the FEM program ABAQUS. Test results show that the earth pressure on reinforced roadbed of ballasted track on the asphalt roadbed was relatively low compared with that of simple ballasted track. The elastic and plastic displacements of simple ballasted track on the asphalt roadbed were also lower than those of ballasted track. These test results may indicate that the use of ballasted track on asphalt roadbed is an advantageous system in view of long-term maintenance.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

The New X-ray Induced Electron Emission Spectrometer

  • Yu.N.Yuryev;Park, Hyun-Min;Lee, Hwack-Ju;Kim, Ju-Hwnag;Cho, Yang-Ku;K.Yu.Pogrebitsky
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.5-6
    • /
    • 2002
  • The new spectrometer for X-ray Induced Electron Emission Spectroscopy (XIEES) .has been recently developed in KRISS in collaboration with PTI (Russia). The spectrometer allows to perform research using the XAFS, SXAFS, XANES techniques (D.C.Koningsberger and R.Prins, 1988) as well as the number of techniques from XIEES field(L.A.Bakaleinikov et all, 1992). The experiments may be carried out with registration of transmitted through the sample x-rays (to investigate bulk samples) or/and total electron yield (TEY) from the sample surface that gives the high (down to several atomic mono-layers in soft x-ray region) near surface sensitivity. The combination of these methods together give the possibility to obtain a quantitative information on elemental composition, chemical state, atomic structure for powder samples and solids, including non-crystalline materials (the long range order is not required). The optical design of spectrometer is made according to Johannesson true focusing schematics and presented on the Fig.1. Five stepping motors are used to maintain the focusing condition during the photon energy scan (crystal angle, crystal position along rail, sample goniometer rail angle, sample goniometer position along rail and sample goniometer angle relatively of rail). All movements can be done independently and simultaneously that speeds up the setting of photon energy and allows the using of crystals with different Rowland radil. At present six curved crystals with different d-values and one flat synthetic multilayer are installed on revolver-type monochromator. This arrangement allows the wide range of x-rays from 100 eV up to 25 keV to be obtained. Another 4 stepping motors set exit slit width, sample angle, channeltron position and x-ray detector position. The differential pumping allows to unite vacuum chambers of spectrometer and x-ray generator avoiding the absorption of soft x-rays on Be foil of a window and in atmosphere. Another feature of vacuum system is separation of walls of vacuum chamber (which are deformed by the atmospheric pressure) from optical elements of spectrometer. This warrantees that the optical elements are precisely positioned. The detecting system of the spectrometer consists of two proportional counters, one scintillating detector and one channeltron detector. First proportional counter can be used as I/sub 0/-detector in transmission mode or by measuring the fluorescence from exit slit edge. The last installation can be used to measure the reference data (that is necessary in XANES measurements), in this case the reference sample is installed on slit knife edge. The second proportional counter measures the intensity of x-rays transmitted through the sample. The scintillating detector is used in the same way but on the air for the hard x-rays and for alignment purposes. Total electron yield from the sample is measured by channeltron. The spectrometer is fully controlled by special software that gives the high flexibility and reliability in carrying out of the experiments. Fig.2 and fig.3 present the typical XAFS spectra measured with spectrometer.

  • PDF