• 제목/요약/키워드: High Pressure Homogenization

검색결과 49건 처리시간 0.024초

Effects of Ultra-high Pressure Homogenization on the Emulsifying Properties of Whey Protein Isolates under Various pH

  • Lee, Sang-Ho;Subirade, Muriel;Paquin, Paul
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.324-329
    • /
    • 2008
  • The effect of ultra-high pressure homogenization on the emulsifying properties of whey protein was investigated in a model emulsion made with whey protein isolate and soya oil under various pH. The emulsifying properties, the average diameter of the oil droplets ($d_{vs}$), and the protein load, were measured for each emulsion produced at different homogenization pressures (50 to 200 MPa) and pH values (4.6 to 8.0). According to the results of variance analysis and response surface, the pH had more influence on oil droplet size and protein load than homogenization pressure. The model equations, which were obtained by response surface analysis, show that pH and homogenization pressure had the major effect on oil droplet size and protein load. Higher homogenization pressure decreased the average droplet size and the protein load. Homogenization at high pressure, as opposed to low pressure, causes no overprocessing, but the effect was pH-dependent. The average diameter of the oil droplets increased slightly by decreasing the pH from 8.0 to 6.5 and then increased dramatically toward the isoelectric point of whey protein (i.e., at pH 4.6). Moreover associated droplets were found at acidic pH and their size was increased at high temperature.

고압균질처리가 전분필름의 물성에 미치는 영향 (Effects of High Pressure Homogenization on Physicochemical Properties of Starch Films)

  • 강은정;이재권
    • 산업식품공학
    • /
    • 제15권1호
    • /
    • pp.70-74
    • /
    • 2011
  • 전분필름의 물성에 미치는 고압균질 처리의 영향을 검토한 결과, 고압균질처리 옥수수전분필름은 산화전분필름과 유사한 투명도를 가지며, 용해도와 산소투과억제력의 증가와 함께 인장강도가 다소 높아지는 것을 확인하였다. 이러한 고압균질처리 옥수수전분필름의 물성변화는 고압균질기의 고압과 전단력에 의해 호화전분입자가 완전히 소실되고 전분의 용해도 증가와 보다 균일한 분산상이 형성되기 때문으로 판단되었다. 일반적인 호화과정을 통해 형성되는 전분필름의 구조는 연속상의 아밀로오스에 팽윤된 접분입자가 분산되어 있는 network 형태에서 형성된다. 반면 고압균질처리의 경우, 호화전분입자의 붕괴로 아밀로펙틴이 연속상을 이루고 여기에 아밀로오스가 분산상으로 존재하는 새로운 분산계(dispersed system)가 형성되어, 기존 호화 방법으로 제조한 필름과 다른 물성을 나타내는 것으로 판단되었다.

Effect of Homogenization Pressure on Plasmin Activity and Mechanical Stress-Induced Fat Aggregation of Commercially Sterilized Ultra High Temperature Milk during Storage

  • Kim, Sun-Chul;Yun, So-Yul;Ahn, Na-Hyun;Kim, Seong-Min;Imm, Jee-Young
    • 한국축산식품학회지
    • /
    • 제40권5호
    • /
    • pp.734-745
    • /
    • 2020
  • Commercially sterilized ultra high temperature (UHT) milk was manufactured at different homogenization pressures (20, 25, and 30 MPa), and changes in fat particle size, mechanical stress-induced fat aggregation, plasmin activity, and lipid oxidation were monitored during ambient storage of the UHT milk for up to 16 wk. The particle sizes of milk fat globules were significantly decreased as homogenization pressure increased from 20 to 30 MPa (p<0.05). The presence of mechanical stress-induced fat aggregates in milk produced at 20 MPa was significantly higher than for UHT milk produced at either 25 or 30 MPa. This difference was maintained all throughout the storage. There were no significant differences in plasmin activity, trichloroacetic acid (12%, w/v) soluble peptides, and the extent of lipid oxidation. Based on these results, an increase of homogenization pressure from 20 (the typical homogenization pressure employed in the Korea dairy industry) to 25-30 MPa significantly decreased mechanical stress-induced fat aggregation without affecting susceptibility to lipid oxidation during storage.

구멍갈파래의 고압 균질 전처리 공정을 통한 바이오에탄올 생산용 당화수율 증진 (Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production)

  • 최운용;이춘근;안주희;서용창;이상은;정경환;강도형;조정섭;최근표;이현용
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.400-406
    • /
    • 2011
  • This study was investigated to improve the saccharification yield of Ulva pertusa Kjellman by the high pressure homogenization process. It was found that the high pressure homogenization pretreatment effectively destructed the cell wall structures only by using water. The high pressure homogenization process was operated under various conditions such as 10000, 20000 or 30000 psi with different recycling numbers. The optimal condition was determined as 30000 psi and 2 pass of recycling numbers and the sugar conversion yields were 16.02 (%, w/w) of glucose and 14.70 (%,w/w) of xylose, respectively. In the case of enzymatic treating the hydrolyzates with 5 FPU/glucan of celullase and 100 units/mL of amyloglucosidase, 65.8% of carbohydrates was converted into glucose. Using the hydrolysates of Ulva pertusa Kjellman, 48.7% of ethanol was obtained in the culture S.cerevisiae. These results showed that the high pressure homogenization process could efficiently hydrolyze the marine resource by using only water for bioethanol production.

Optimization of Preparation Variables for Trimyristin Solid Lipid Nanoparticles

  • Choi, Mi-Hee;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권1호
    • /
    • pp.51-55
    • /
    • 2007
  • Solid lipid nanoparticles (SLNs) have been regarded to behave similar to the vegetable oil emulsions because emulsions of lipid melts are formed before lipid droplets being solidified to turn into SLNs. Compared to lipid emulsion, however, it has been more difficult to obtain stable SLNs and needs more extensive considerations on stabilizer and manufacturing process. In the present study, we tried to prepare phosphatidylcholine-based trymyristin (TM) SLNs using high pressure homogenization method and optimize the manufacturing variables such as homogenization pressure, number of homogenization cycles, cooling temperature, co-stabilizer and freeze-drying with cryoprotectants. Nano-sized TM particles could be Prepared using egg Phosphatidylcholine and pegylated phospholipids ($PEG_{2000}$PE) as stabilizers. Based on the optimization study, the dispersion was manufactured by homogenization under the pressure of 100 MPa for more than 5 cycles, and solidifying the intermediately formed lipid melt droplets by dipping in liquid nitrogen followed by thawing at room temperature. In addition, TM SLNs could be freeze-dried and then redispersed easily without significant particle size changes after freeze drying with 10% and 12.5% sucrose or trehalose. The TM SLNs established in this study can be used as delivery system for drugs and cosmetics.

Influence of pH, Emulsifier Concentration, and Homogenization Condition on the Production of Stable Oil-in-Water Emulsion Droplets Coated with Fish Gelatin

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.999-1005
    • /
    • 2007
  • An oil-in-water (O/W) emulsion [20 wt% com oil, 0.5-6.0 wt% fish gelatin (FG), pH 3.0] was produced by high pressure homogenization, and the influence of pH, protein concentration, and homogenization condition on the formation of FG-stabilized emulsions was assessed by measuring particle size distribution, electrical charge, creaming stability, microstructure, and free FG concentration in the emulsions. Optical microscopy indicated that there were some large droplets ($d>10\;{\mu}m$) in all FG-emulsions, nevertheless, the amount of large droplets tended to decrease with increasing FG concentration. More than 90% of FG was present free in the continuous phase of the emulsions. To facilitate droplet disruption and prevent droplet coalescence within the homogenizer, homogenization time was adjusted in O/W emulsions stabilized by 2.0 or 4.0 wt% FG. However, the increase in the number of pass rather promoted droplet coalescence. This study has shown that the FG may have some limited use as a protein emulsifier in O/W emulsions.

우유 균질 조건 예측을 위한 반응표면방법론의 활용 (Applying Response Surface Methodology to Predict the Homogenization Efficiency of Milk)

  • 임성수;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2023
  • Response surface methodology (RSM) is a statistical approach widely used in food processing to optimize the formulation, processing conditions, and quality of food products. The homogenization process is achieved by subjecting milk to high pressure, which breaks down fat globules and disperses fat more evenly throughout milk. This study focuses on an application of RSM including the logit transformation to predict the efficiency of milk homogenization, which can be maximized by minimizing the relative difference in fat percentage between the top part and the remainder of milk. To avoid a negative predicted value of the minimum of this proportion, the logit transformation is used to turn the proportion into the logit, whose possible values are real numbers. Then, the logit values are modeled and optimized. Subsequently, the logistic transformation is used to turn the predicted logit into the predicted proportion. From our model, the optimum condition for the maximized efficiency of milk homogenization was predicted as the combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 10 days. Additionally, with a combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 50 days, the level of milk homogenization was predicted to be acceptable, even with the problem of extrapolation taken into account.

비타민 B1 유도체(Thiamine Di-lauryl Sulfate:TDS)의 나노입자화를 통한 고추탄저병균의 항진균 활성 증진 (Enhancement of Antifungal Activity of Anthracnose in Pepper by Nanopaticles of Thiamine Di-lauryl Sulfate)

  • 서용창;조정섭;정해윤;임태빈;조경숙;이태우;정명훈;이강형;김성일;윤원병;이현용
    • 한국약용작물학회지
    • /
    • 제19권3호
    • /
    • pp.198-204
    • /
    • 2011
  • This study was performed to enhance antifungal activity of anthracnose in chili pepper by nanopaticles of thiamine di-lauryl sulfate (TDS) through high pressure homogenization process. Yield of TDS was 79.14% by reaction of thiamine hydrochloride and sodium lauryl sulfate. TDS nanopaticle solution was manufactured through high pressure homogenization process. The turbidity of nanoparticles solution was increased with increasing the concentration of TDS, and nanoparticles solution of 100 ppm was showed the highest turbidity with absorbance of 3.212. The size of nanoparticles solution was measured as average 258.6 nm by DLS. Nanoparticles solution of 100 ppm showed growth inhibition activity with higher than about 80% compared to the control group against Colletotrichum gloeosporioides. Finally, nanoparticles solution was increased effectively the penetration of the TDS nanopaticles on attached cell membrane of hyphae and started to destruct the cells under microscope observation. Consequently, we suggested that the TDS nanoparticle solution by high pressure homogenization process might be suitable biochemical pesticides for improving the antifungal activities against anthracnose in pepper.

Effect of trans-Cinnamaldehyde and High Pressure Treatment on Physico-chemical and Microbial Properties of Milk during Storage Periods

  • Chun, Ji-Yeon;Kim, Kwon-Beom;Shin, Jong-Boo;Min, Sang-Gi
    • 한국축산식품학회지
    • /
    • 제33권1호
    • /
    • pp.16-23
    • /
    • 2013
  • This study was carried out to investigate the effect of trans-cinnamaldehyde and high pressure treatment on milk. Cinnamon oil milk was manufactured by high speed homogenization (3,000 rpm) and high pressure homogenization (500 and 2,000 bar) processing UHT milk and trans-cinnamaldehyde of various concentrations (0 to 0.1% (w/v)). Cinnamon oil milk was inoculated with Escherichia coli (6.4 Log CFU/mL) and kept at $7^{\circ}C$ for 10 d to observe the antibacterial effect. The cinnamon oil milk containing 0.05% (w/v) trans-cinnamaldehyde initially began to show an antibacterial effect and Escherichia coli completely died in cinnamon oil milk added 0.1% (w/v) trans-cinnamaldehyde on the 6th day of storage. The result of the TBA value showed that the addition of 0.1% (w/v) trans-cinnamaldehyde was also effective to protect lipid oxidation. In the physical properties of cinnamon oil milk, particle sizes were enlarged in all samples during storage periods and the total color difference of cinnamon oil milk was slightly increased as level of high pressure. The surface tension of cinnamon oil milk treated 2,000 bar was remarkably higher than other samples. It seems that trans-cinnamaldehyde showed antibacterial activity and antioxidation effect at 0.05 and 0.1% (w/v) of concentration. Remarkably, high pressure treatment did not influence its microbial property but slightly affected the physical properties of cinnamon oil milk.

반응표면분석법을 활용한 Glabridin 함유 나노에멀젼의 피부흡수 향상을 위한 제형 최적화 연구 (A Study on Formulation Optimization for Improving Skin Absorption of Glabridin-Containing Nanoemulsion Using Response Surface Methodology)

  • 김세연;김원형;윤경섭
    • 대한화장품학회지
    • /
    • 제49권3호
    • /
    • pp.231-245
    • /
    • 2023
  • 화장품 업계에서는 미백, 주름, 항산화, 항노화 등 기능성 화장품의 신소재 개발과 더불어 실제로 피부에 적용 시 피부흡수율을 높이는 기술이 중요하다. 이에 본 연구에서는 실험설계법인 반응표면분석법(RSM)을 활용하여 나노에멀젼 제형을 최적화하고자 하였다. Glabridin을 활성성분으로 하여 고압유화 방법으로 나노에멀젼을 제조하였으며, 최종적으로 최적화한 나노에멀젼의 피부흡수율을 평가하였다. RSM 인자로서 계면활성제 함량, 콜레스테롤 함량, 오일 함량, 폴리올 함량, 고압유화 압력, 고압유화 횟수를 달리하여 나노에멀젼을 제조하였다. 그 중 입자 크기에 가장 큰 영향을 미치는 인자인 계면활성제 함량, 오일 함량, 고압유화 압력, 고압유화 횟수를 독립변수로 하였고, 나노에멀젼의 입자 크기와 피부흡수율을 반응변수로 하였다. 중심점 5 회 반복실험을 포함하여 총 29 회 실험이 무작위로 수행되었으며, 제조된 나노에멀젼의 입자 크기와 피부흡수율을 측정하였다. 그 결과를 바탕으로 최소 입자 크기, 최대 피부흡수율을 갖는 제형을 최적화하였으며, 계면활성제 함량 5.0 wt%. 오일 함량 2.0 wt%, 고압유화 압력 1,000 bar, 고압유화 횟수 4 pass를 최적 조건으로 도출하였다. 최적 조건으로 제조한 나노에멀젼의 물성으로 입자 크기는 111.6 ± 0.2 nm, 다분산지수는 0.247 ± 0.014, 제타전위는 -56.7 ± 1.2 mV로 측정되었다. 나노에멀젼과 일반 에멀젼 피부흡수 시험 결과, 24 h 후 나노에멀젼의 누적 투과량은 79.53 ± 0.23%이며, 대조군으로서 에멀젼의 누적 투과량은 66.54 ± 1.45%로 나노에멀젼이 에멀젼보다 13% 높았다.