• Title/Summary/Keyword: High Pressure Gas Cylinder

Search Result 112, Processing Time 0.023 seconds

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.

A study on spark-ignition engine knock measurements (스파크점화 기관의 노킹측정에 관한 연구)

  • 전광민;장원준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.57-64
    • /
    • 1991
  • Spart-ignition engine knock is an abnormal combustion phenomenon originated from auto- ignition of a portion of or the entire end-gas during the later stage of combustion process. And engine knock is accompanied by a vibration of engine cylinder block and a high-pitched metallic noise. Engine knock is characterized in terms of its intensity, its occurrence crank angel and the percentage of engine knock cycles. To characterize engine knock, a precise measurements of cylinder pressure and a statistical analysis of cylinder pressure data are needed. The purpose of this study is to develope a technique to measure engine knock and its characteristics as a function of ignition timing change. A 4-cylinder spark-ignition engine and unleaded gasoline, whose octane number was 94, were used for experiments. To measure engine knock and to analyze engine knock characteristics, cylinder pressure data were sampled by a high speed data acquisition system which was developed in this study. Cylinder pressure data were sampled at each 0.1.deg. crank angle and the number of cycles continuously sampled was 80.

  • PDF

A Study on Temperature Characteristics of Automatic Valve for High Pressure Cylinder of FCV (수소연료전지 자동차 압력 용기용 전자밸브의 온도 특성에 관한 연구)

  • Lee, Hyo-Ryeol;Ahn, Jung-Hwan;Kim, Hwa-Young;Kim, Young-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • FCV is installed with a automatic valve attached in an high pressure cylinder to control the hydrogen flow. The supply of hydrogen from the cylinder into the fuel cell stack is controlled via the on/off operation of a solenoid attached to the automatic valve. The solenoid needs to provide the necessary attraction force even at any saturation temperature caused by drive of the vehicle. In this study, the simplified prediction equations for the saturation temperature are suggested. The finite element analysis was performed by steady state technique, according to the boundary condition in order to predict the saturation temperature and attraction force. Finally, the saturation temperature was validated through comparison between the analysis results and measurement results. From the results, the measured saturation temperature $5.9^{\circ}C$ lower with respect to the analysis results. And the error of attraction force ranged from 1.0 to 2.1 N at testing conditions.

Development of high-pressure Type 3 composite cylinder for compressed hydrogen storage of fuel cell vehicle (차량용 200bar 급 Type 3 복합재 압력용기의 개발 및 설계인증시험)

  • Chung, Sang-Su;Park, Ji-Sang;Kim, Tae-Wook;Chung, Jae-Han
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.203-206
    • /
    • 2005
  • The objective of study on composite cylinder for alternative fuel vehicle is to develop safe, efficient, and commercially viable, on-board fuel storage system for the fuel cell vehicle or natural gas vehicle that use highly compressed gaseous fuel such as hydrogen or natural gas. This study presents the whole procedure of development and certification of a type 3 composite cylinder of 207bar service pressure and 70 liter water capacity, which includes design/analysis, processing of filament winding, and validation through various testing and evaluation. Design methods of liner configuration and winding patterns are presented. Three dimensional, nonlinear finite element analysis techniques are used to predict burst pressure and failure mode. Design and analysis techniques are verified through burst and cycling tests. The full qualification test methods and results for validation and certification are presented.

  • PDF

Calculation of Pressure Rise in the Puffer Cylinder of EHV GCB Without Arc (무부하시의 초고압 GCB의 파퍼실린더 내부의 상승압력 계산)

  • Park, K.Y.;Song, K.D.;Choi, Y.K.;Shin, Y.J.;Song, W.P.;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1559-1561
    • /
    • 1994
  • At present, the principle of puffer action in high current interruption is adopted in almost of the EHV(Extra High Voltage) and UHV(Ultra High Voltage) GCB(Gas Circuit Breakers). The thermal interruption capability of these GCBs critically depends on the pressure rise in the puffer cylinder at current zero. The pressure rise in the puffer cylinder depends on the puffer cylinder volume, flow passage and leakage area in the interrupter, stroke curve etc. Recently commercial CFD(Computational Fluid Dynamics ) packages have been widely adopted to calculate the pressure distribution in the interrupter. However, there are still several problems with it, e.g. very expensive price, moving boundary problem, computation time, difficulty in using the package etc. Thus, the calculation of the puffer cylinder pressure in simple and relatively correct method is essential in early stage of GCB design. In these paper, the model ing technique and computed results for EHV class GCB (HICO, 145kV 40kA and 362kV 40kA GCB) are presented and compared with available measured results.

  • PDF

Validation of diesel engine gas flow one-dimensional numerical analysis using the method of characteristics (특성곡선법을 이용한 디젤엔진 가스유동 1차원 수치해석의 타당성 평가)

  • KIM, Kyong-Hyon;KONG, Kyeong-Ju
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.230-237
    • /
    • 2020
  • In order to design a diesel engine system and predict its performance, it is necessary to analyze the gas flow of the intake and exhaust system. A gas flow analysis in three-dimensional (3D) format needs a high-resolution workstation and enormous time for analysis. Therefore, the method of characteristics (MOC) was used for a gas flow analysis with a fast calculation time and a low-resolution workstation. An experiment was conducted on a single cylinder diesel engine to measure pressure in cylinder, intake pipe and exhaust pipe. The one-dimensional (1D) gas flow was analyzed under the same conditions as the experiment. The engine speed, valve timing and compression ratio were the same conditions and the intake pressure was inputted as the experimental results. Bent pipe such as an exhaust port that cannot be realized in 1D was omitted. As results of validation, the cylinder pressure showed accuracy, but the exhaust pipe pressure exhibited inaccuracy. This is considered as an error caused by the failure to implement a bent pipe such as an exhaust port. When analyzed in 3D, calculation time required 61 hours more based on a model of this study. In the future, we intend to implement a bent pipe that cannot be realized in 1D using 3D and prepare a method to supplement reliability by using 1D-3D coupling.

Development of the Safety Cabinet for Respiratory High-Pressure cylinder according to Consequence Analysis of Physical Explosion Damage (호흡용 고압용기 파열 피해영향 분석에 따른 안전충전함 개발)

  • Jang, Kap Man;Kim, Jeong Hwan;Jang, Yu Ri;Lee, Jin Han;Jo, Young Do
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.80-88
    • /
    • 2016
  • A fire station and scuba have operated filling facilities for respiratory high-pressure cylinder without getting authority or reporting according to High-Pressure Gas Safety Control Act. They need facility improvement and special management to make provision for the time of accident during filling process. The Government have strived to correct illegal operations and suggested an alternative, establishing and operating the safety cabinet. It insures a safety being distance from danger caused by overpressure and a safety provoked by the protective wall equals or superiors. The safety cabinet is required to have an internal structure that smoothly distribute overpressure at the time of rupture. Plus, it needs to minimize fragments. It is also equipped with the performance of protective wall that makes overpressure to outside vent on the place where there is no person (top or bottom). This study calculated the consequence of physical explosion damage and built a prototype of safety cabinet. In addition, through the gas burst test, it derives for the ways to mitigate the physical explosion damage.

A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine (스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구)

  • 송해박;조한승;이종화;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

Composite Pressure Vessel for Natural Gas Vehicle by Filament Winding (필라멘트 와인딩 공정에 의한 천연가스 차량용 복합재료 압력용기)

  • 김병선;김병하;김진봉
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Composite pressure vessels with HDPE (high density polyethlyne) liner with metal boss at each end were developed by Filament Winding Process. The vessel is composed of a dome-shaped part at each end and a cylinder-shaped part at the middle of the vessel. The environmental tests carried out for possible vessel materials such as High Density Polyethlyn (HDPE), resins and reinforcing fibers up to a year showed no significant damages. The boss was designed to minimize the gas leak which was verified by FEM analysis. Most ideal fiber tension was obtained by experimental method and the fiber volume fraction, $\textrm{V}_{f}$, obtained by image analyzer were 55.4 % in cylinder and 55.6 % in dome parts, respectively. Winding pattern is programmed to control the composite thickness in the dome areas such that the failure of the vessel may occur in the cylinder. During the cure, the vessel was rotated and a constant internal pressure of 0.62 bar was applied. From this, the vessel's burst pressure is improved by 28 %. The burst and fatigue tests for under-wound and fully wound vessel showed satisfactory results.

Finite Element Analysis of Stress Behaviour Characteristics in Gas Pressure Vessels (가스압력용기의 응력거동특성에 관한 유한요소해석)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.58-64
    • /
    • 2003
  • This paper presents design safety analysis of pressure vessels. The gas pressure and thermal loads are applied to the pressure vessel simultaneously. In this study, ASME Sec. VIII Div. 2 code was accepted for the safety design of high-pressure vessel. And this result was analyzed using a coupled thermal-mechanical FEM analysis technique. The FEM computed result shows that ASME design code may not guarantee for combined loads of high gas pressure and thermal loads. And solid pressure vessel may be safe compared to other pressure vessels with supporting rings round the cylinder body.

  • PDF