• Title/Summary/Keyword: High Polymer

Search Result 3,754, Processing Time 0.04 seconds

High-Efficiency Polymer-Titanium Oxide Hybrid Solar Cells

  • Lee, Kwang-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.186-186
    • /
    • 2006
  • We report a new architecture for high efficiency polymer solar cells introducing a new concept of 'optical spacer' with new material. By implementing a novel solution-based titanium oxide ($TiO_{x}$) layer between the active layer and the electron collecting Al electrode, we invented a way to increase ${\sim}50\;%$ in power conversion efficiency compared to conventional polymer solar cells. Now the new devices exhibit ${\sim}6\;%$ power conversion efficiency, which is the highest value reported to date for a polymer based photovoltaic cell. The $TiO_{x}$ layer increases the efficiency by modifying the spatial distribution of the light intensity inside the device, thereby creating more photogenerated charge carriers in the bulk heterojunction layer.

  • PDF

A Poling Study on a Piezoceramic/Polymer 0-3 Composites for Hydrophone Applications (Hydrophone 응용을 위한 Piezoceramic/Polymer 0-3 Composite의 분극 개선)

  • Lee, S.H.;Cho, H.C.;SaGong, G.;Seul, S.D.;Koo, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.349-352
    • /
    • 1989
  • Poling piezoelectric ceramic-polymer composites with 0-3connectivity is difficult because of the high dielectric constant of most of the ferroelectric filler materials, and the high resistivity of the polymer matrix. To aid in poling this type of composite, conductivity of the polymer phase can be controlled by adding small amount of a semiconductor phase such as germanium, carbon or silicon. In this study, flexible piezoelectric composites of $PbTiO_3$ powder and Eccogel polymer were developed using small amounts of a semiconducting phase. These composites were poled rapidly at low voltages, resulting in properties superior to composites prepared without a conductive phase. The effect of addition of various conductive phase with different volume percentage on the dielectric and piezoelectric properties of the composite are discussed here.

  • PDF

Isothermal Compression Molding for a Polymer Optical Lens (등온압축성형공법을 이용한 폴리머 렌즈 성형)

  • Oh, Byung-Do;Kwon, Hyun-Sung;Kim, Sun-Ok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.996-999
    • /
    • 2008
  • Aspheric polymer lens fabrication using isothermal compression molding is presented in this paper. Due to increasing definition of an image sensor, higher precision is required by a lens which can be used as a part of an imageforming optical module. Injection molding is a factory standard method for a polymer optical lens. But achievable precision using injection molding has a formidable limitation due to the machining of complex mold structure and melting and cooling down a polymer melt under high pressure condition during forming process. To overcome the precision requirement and limitation using injection molding method, isothermal compression molding is applied to fabrication of a polymer optical lens. The fabrication condition is determined by numerical simulations of temperature distribution and given material properties. Under the found condition, the lens having a high precision can successfully be reproduced and does not show birefringence which results often in optical degradation.

  • PDF

Low voltage operated top gated polymer thin film transistors with a high capacitance polymer dielectric

  • Jung, Soon-Won;You, In-Kyu;Noh, Yong-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.907-909
    • /
    • 2009
  • Low voltage operated top gated polymer transistors were fabricated with a high permittivity polymer, P(VDF-TrFE) and F8T2 as a gate dielectric and semiconducting layer, respectively. The operating voltage of transistors was effectively reduced under -10 V and typical threshold voltages were as low as -1 ~ -4 V with the reasonable charge carrier mobility of $10^{-3}cm^2$/Vs for the amorphous polymer. The large hysteresis in transfer curve was improved effectively by annealing at low temperature.

  • PDF

The Analysis on the Deformation of Electrostrictive Polymer Film with respect to Time under Constant Voltage

  • Park, Kyung-Chul;Yun, Ji-Won;Jeon, Jae-Wook;Park, Hyoukryueol;Kim, Hunmo;Nam, Jae-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.46.5-46
    • /
    • 2001
  • Electrostrictive polymer is deformed by electric force generated by electric field built by high voltage. When high voltage is applied to the electrostrictive polymer film in which the electrodes such as conductive grease or carbon powder are installed, it expands in the direction of area. Because electrostrictive polymer is incompressible and electric force is applied to it in the direction of thickness. Electrostrictive polymer film in which electrodes are installed, functions as a parallel-plate capacitor. Therefore anode and cathode charges are piled up or both electrodes and there exists attractive force that functions as pressure in the direction of thickness. So the thickness of electrostrictive polymer becomes thicker ...

  • PDF

Fabrication and Properties of Conductive Carbon Fiber/Polyethylene Composite Films Fabricated under High Intensity Electric Fields : Effect of Polymer Sublayer (고전기장을 이용한 도전성 탄소섬유/폴리에틸렌 복합필름의 제조 및 특성 연구 : 고분자 점착하층의 영향)

  • Park, Min;Kim, Jun-Kyung;Lim, Soon-Ho;Ko, Moon-Bae;Choe, Chul-Rim;Mironov, V.S.;Bang, Hyo-Jae;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.268-275
    • /
    • 2000
  • We investigated the effect of polymer sublayer on volumetric resistivity and tensile strength of carbon fiber (CF)/polyethylene composite films fabricated under high intensity electric fields. The dependence of volumetric resistivity and tensile strength of the films on the polymer sublayer thickness or mass part exhibited complex behavior according to CF content and CF layer density in the films. As the thickness of polymer sublayer increases, two groups of processes at thermo-mechanical forming stage would take effects in the properties of the films. The first group comprises the increase of polymer layer thickness having reduced CF content compared with central or upper part of the film and insufficient wetting of CF resulting in the loosened structure near upper film side. The second group, on the other hand, is the improvement of mobility of molten sublayer leading to better distribution of CF throughout the film thickness and the formation of more compact structure. The different degree of contribution of these two competing processes at varied CF content and CF layer density could explain complex dependence of the film properties on the polymer sublayer. These results are important to optimize the electrical and mechanical properties of highly conductive polymer films, which can be used as electromagnetic interference shielding materials.

  • PDF