• Title/Summary/Keyword: High Output Current

Search Result 1,481, Processing Time 0.029 seconds

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

Buck and Half Bridge Series DC-DC Converter (강압형과 하프 브리지 직렬형 DC-DC 컨버터)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

Slew-Rate Enhanced Low-Dropout Regulator by Dynamic Current Biasing

  • Jeong, Nam Hwi;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.376-381
    • /
    • 2014
  • We present a CMOS rail-to-rail class-AB amplifier using dynamic current biasing to improve the delay response of the error amplifier in a low-dropout (LDO) regulator, which is a building block for a wireless power transfer receiver. The response time of conventional error amplifiers deteriorates by slewing due to parasitic capacitance generated at the pass transistor of the LDO regulator. To enhance slewing, an error amplifier with dynamic current biasing was devised. The LDO regulator with the proposed error amplifier was fabricated in a $0.35-{\mu}m$ high-voltage BCDMOS process. We obtained an output voltage of 4 V with a range of input voltages between 4.7 V and 7 V and an output current of up to 212 mA. The settling time during line transient was measured as $9{\mu}s$ for an input variation of 4.7-6 V. In addition, an output capacitor of 100 pF was realized on chip integration.

A New High Efficiency Phase Shifted Full Bridge Converter for a Power Sustaining Module of Plasma Display Panel

  • Lee Woo-Jin;Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2006
  • A new high efficiency phase shifted full bridge (PSFB) converter for the power sustaining module of a plasma display panel (PDP) is proposed in this paper. The proposed converter employs a voltage doubler rectifier without an output inductor. Since it has no output inductor, the voltage stresses of the secondary rectifier diodes can be clamped at the output voltage level. No dissipative resistor-capacitor (RC) snubber for rectifier diodes is needed. Therefore, high efficiency, as well as, a low noise output voltage can be realized. Due to the elimination of the large output inductor, it features a simple structure, lower cost, smaller mass and lighter weight. Furthermore, the proposed converter has wide zero voltage switching (ZVS) ranges with low current stresses of the primary switches. Also the resonance between the leakage inductor of the transformer and the capacitor of the voltage doubler cell reduces the current stresses of the rectifier diodes. In this paper, operational principles, an analysis of the proposed converter and experimental results are presented.

An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications

  • Hwu, Kuo-Ing;Jiang, Wen-Zhuang
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1277-1287
    • /
    • 2016
  • This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.

Output Characteristic Analysis of High-Current Rectifier for Electrolysis of Seawater (해수 전기분해용 대전류 인버터 방식의 정류기 특성분석)

  • Cho, Won-Woo;Kim, Jin-Young;Kim, Seul-Gi;Kim, In-Dong;Nho, Eui-Cheol;Goh, Gang-Woo;Bae, Sang-Bum;Kang, Bu-Nyung
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.570-571
    • /
    • 2010
  • To reduce the problem of ecocide, the plating equipment, water treatment system, electrolysis facility in ship need high current high power rectifier. This paper shows entire constitution of the proposed high-current rectifier for electrolysis of seawater, describes a way to design controller and analyzes output characteristic of the rectifier.

  • PDF

Improved DC Model and Transfer Functions for the Negative Output Elementary Super Lift Luo Converter

  • Wang, Faqiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1082-1089
    • /
    • 2017
  • Negative output elementary super lift Luo converter (NOESLLC), which has the significant advantages including high-voltage transfer gain, high efficiency, high power density, and reduced output voltage/inductor current ripples when compared to the traditional DC-DC converters, is an attractive DC-DC converter for the field of negative DC voltage applications. In this study, in consideration of the voltage across the energy transferring capacitor changing abruptly at the beginning of each switching cycle, the improved averaged model of the NOESLLC operating in continuous conduction mode (CCM) is established. The improved DC model and transfer functions of the system are derived and analyzed. The current mode control is applied for this NOESLLC. The results from the theoretical calculations, the PSIM simulations and the circuit experiments show that the improved DC model and transfer functions here are more effective than the existed ones of the NOESLLC to describe its real dynamical behaviors.

The One Direction 3-phase DC-DC Converter (3상 변압기를 이용한 단방향 DC-DC 컨버터)

  • Qu, Zhongzhi;Le, Tuan-Vu;Park, Jin-Wook;Hwang, Jung-Goo;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.405-406
    • /
    • 2014
  • This paper presents the one direction 3-phase DC-DC converter. The converter employs DC-AC inverter, 3-phase 1:N transformer and 3-phase full wave rectification circuit make low voltage direct current to high voltage direct current. By computer simulation and experiment, the theoretical results can be verified or modified. Finally, the simulation and experiment results are presented. Compared with the general DC converter, has anti-interference ability, high reliability, high output power, range and other characteristics, widely used, fully isolated input and output, the output of the multiplexer is not limited, polar optional.

  • PDF

High-Accuracy Current Mirror Using Adaptive Feedback and its Application to Voltage-to-Current Converter (적응성 귀환을 이용한 고정도 전류 미러와 이를 이용한 전압-전류 변환기)

  • Cha, Hyeong-U;Kim, Hak-Yun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.93-103
    • /
    • 2002
  • A new current mirror for high-accuracy current-mode signal processing and integrated circuit design was proposed. The current mirror adopts the technique of an adaptive feedback to reduce the input impedance and the output stage of regulated cascode current mirror to increase the output impedance. Simulation results show that the current mirror has input impedance of 0.9Ω, the output impedance of 415 MΩ, and current gain of 0.96 at the supply voltage Vcc=5V. The power dissipation is 1.5㎽. In order to certify the applicability of the proposed current mirror, a voltage-to-current converter using the current mirror is designed. Simulation results show that the converter has good agreement with theoretical equation and has three times better conversion characteristics when compared with voltage-to-current converter using Wilson current mirror.

Lifetime prediction of optocouplers in digital input and output modules based on bayesian tracking approaches

  • Shin, Insun;Kwon, Daeil
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 2018
  • Digital input and output modules are widely used to connect digital sensors and actuators to automation systems. Digital I/O modules provide flexible connectivity extension to numerous sensors and actuators and protect systems from high voltages and currents by isolation. Components in digital I/O modules are inevitably affected by operating and environmental conditions, such as high voltage, high current, high temperature, and temperature cycling. Because digital I/O modules transfer signals or isolate the systems from unexpected voltage and current transients, their failures may result in signal transmission failures and damages to sensitive circuitry leading to system malfunction and system shutdown. In this study, the lifetime of optocouplers, one of the critical components in digital I/O modules, was predicted using Bayesian tracking approaches. Accelerated degradation tests were conducted for collecting the critical performance parameter of optocouplers, current transfer ratio (CTR), during their lifetime. Bayesian tracking approaches, including extended Kalman filter and particle filter, were applied to predict the failure. The performance of each prognostic algorithm was then compared using accuracy and robustness-based performance metrics.