• Title/Summary/Keyword: High Frequency Earthquakes

검색결과 93건 처리시간 0.018초

고감쇠고무 적층받침의 경년열화를 고려한 원전구조물의 지진응답 (Seismic Response of Seismically-Isolated Nuclear Power Plants considering Age-related Degradation of High Damping Rubber Bearing)

  • 박준희;전영선;최인길
    • 한국전산구조공학회논문집
    • /
    • 제26권2호
    • /
    • pp.131-138
    • /
    • 2013
  • 면진장치는 상부구조물의 지진력을 감소시키는데 크게 기여하지만, 고감쇠고무 적층받침에 사용되는 고무재료는 시간이 경과함에 따라 열화되어 상부구조물의 동특성과 기기들의 지진응답에 영향을 줄 수 있다. 따라서 면진장치의 경년열화를 고려한 구조물의 지진응답을 분석하는 연구가 필요하다. 본 연구에서는 기존 문헌을 통하여 분석된 고무의 경년열화 특성을 사용하여 면진장치를 모델링하였다. 면진된 원전의 지진응답을 평가하기 위하여 격납건물과 보조건물을 대상 구조물로 선정하고, 진동수 성분이 다양한 입력지진동을 사용하여 구조물의 고유진동수, 최대지진응답, 층응답스펙트럼을 시간의 경과에 따라 분석하였다. 해석결과에 의하면 면진장치의 경년열화에 의하여 지진응답이 소폭 증가하였으며, 면진장치가 설치된 후 20년까지 지진응답의 증가율이 크게 나타나므로 이 기간에 상세한 검사가 시행되어야 할 것이다.

System identification of high-rise buildings using shear-bending model and ARX model: Experimental investigation

  • Fujita, Kohei;Ikeda, Ayumi;Shirono, Minami;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제8권4호
    • /
    • pp.843-857
    • /
    • 2015
  • System identification is regarded as the most basic technique for structural health monitoring to evaluate structural integrity. Although many system identification techniques extracting mode information (e.g., mode frequency and mode shape) have been proposed so far, it is also desired to identify physical parameters (e.g., stiffness and damping). As for high-rise buildings subjected to long-period ground motions, system identification for evaluating only the shear stiffness based on a shear model does not seem to be an appropriate solution to the system identification problem due to the influence of overall bending response. In this paper, a system identification algorithm using a shear-bending model developed in the previous paper is revised to identify both shear and bending stiffnesses. In this algorithm, an ARX (Auto-Regressive eXogenous) model corresponding to the transfer function for interstory accelerations is applied for identifying physical parameters. For the experimental verification of the proposed system identification framework, vibration tests for a 3-story steel mini-structure are conducted. The test structure is specifically designed to measure horizontal accelerations including both shear and bending responses. In order to obtain reliable results, system identification theories for two different inputs are investigated; (a) base input motion by a modal shaker, (b) unknown forced input on the top floor.

고감쇠 고무와 강재를 사용한 이중감쇠 제진시스템의 내진성능 (Seismic Performance of Dual Damper System Using High Damping Rubber and Steel)

  • 김정욱;김동건
    • 대한건축학회연합논문집
    • /
    • 제21권1호
    • /
    • pp.185-192
    • /
    • 2019
  • Recently, the frequency and magnitude of earthquakes are increasing worldwide. In Korea, the Gyeongju earthquake (2016) and the Pohang earthquake (2017) caused structural damage to many buildings. Since Korea's seismic design standards were revised to three or more stories in 2005, five-story buildings built before the revision are not designed to be earthquake-resistant. In this situation, if strong earthquake occurs in Korea, there will be great damage. To prevent this, seismic retrofit of buildings should be necessary. The seismic retrofit of classical method is mainly used to reduce the displacement generated in the structure by strengthening stiffness and strength. However, since this method increases the base shear force of the structure, it is difficult to apply it to buildings which have weak foundation. Therefore, in this study, we propose the damper system that reduces the response displacement of buildings and suppresses the increase of base shear force by using high damping rubber and steel. And the seismic performance of the damper system is verified through the experiment and the seismic analysis of the structure.

뉴스 빅데이터를 활용한 재난문자 뉴스 게재 경향 분석 (A Big Data Analysis of the News Trends on Wireless Emergency Alert Service)

  • 이현지;변윤관;장석진;최성종;오승희;이용태
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.726-734
    • /
    • 2019
  • 이 연구에서는 재난문자에 대한 뉴스 건수와 연관어에 대해 알아보았다. 뉴스는 한국언론진흥재단 뉴스 빅데이터 시스템인 빅카인즈를 활용하여 수집하였고, 연간 게재 기사, 재난종류에 따른 뉴스 빈도, 지진과 비 지진 간 뉴스 빈도, 연관어에 대한 분석을 실시하였다. 조사 결과에 따르면, '재난문자'관련 뉴스가 2016년에 182건으로 전년대비 약 20배 증가하는 성장세를 보였다. 재난문자 뉴스는 2016년 이래로 꾸준히 높은 수치를 보였다. 2016년은 지진의 비중이 매우 높았지만 2017년과 2018년은 지진의 비중이 낮아지고 비지진의 비중이 높아지는 것으로 나타났다. '재난문자' 연관어는 행정안전부(국가안전처, 행안부 포함)가 가장 비중 있게 다루어졌고, 그 다음으로 기상청과 국민도 비중 있게 다루어진 용어로 나타났다.

한반도 과거 지진기록에 대한 응답이력 데이터베이스 구축 기초 연구 (A Fundamental Study on the Database of Response History for Historical Earthquake Records on the Korean Peninsula)

  • 최인혁;안재광;곽동엽
    • 대한토목학회논문집
    • /
    • 제39권6호
    • /
    • pp.821-831
    • /
    • 2019
  • 9.12지진(2016.9.12., ML=5.8)과 포항지진(2017.11.15., ML=5.4)은 사회·경제적 피해를 야기시켰고, 이로 인해 지진에 대한 국민의 관심이 과거보다 크게 높아졌다. 지진 빈도가 높은 미국, 일본, 칠레 등 불의 고리 인근의 국가에서는 이미 지진재난에 대비·대응을 위하여 지진재해도(PSHA), 지반운동예측모델(GMPE) 등을 기반으로 인프라 시설을 관리하고 있다. 국내도 앞서 설명된 PSHA, GMPE가 개별 연구자들을 통해 독자적으로 개발되고 있지만, 모델 개발시 생성한 기초 데이터 산출 방법, 최종 결과물의 주요 요소 등이 제한적으로 공개되었다. 이는 해마다 발생하는 지진의 추가를 통한 모델 개선이 아닌 과거 지진에 대해 매번 새롭게 자료 구축을 해야 한다는 문제점을 내포하고 있다. 따라서, 본 연구에서는 GMPE 개발의 기초자료인 플랫파일 생성 방법과 지진 관측자료의 지진파형의 계기보정 방법, 계기진도 생성 방법 등을 기술하였다.

Strong ground motion characteristics of the 2011 Van Earthquake of Turkey: Implications of seismological aspects on engineering parameters

  • Beyen, Kemal;Tanircan, Gulum
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1363-1386
    • /
    • 2015
  • The October 23 2011 Van Earthquake is studied from an earthquake engineering point of view. Strong ground motion processing was performed to investigate features of the earthquake source, forward directivity effects during the rupture process as well as local site effects. Strong motion characteristics were investigated in terms of peak ground motion and spectral acceleration values. Directiviy effects were discussed in detail via elastic response spectra and wide band spectograms to see the high frequency energy distributions. Source parameters and slip distribution results of the earthquake which had been proposed by different researchers were summarized. Influence of the source parameters on structural response were shown by comparing elastic response spectra of Muradiye synthetic records which were performed by broadband strong motion simulations of the earthquake. It has been emphasized that characteristics of the earthquake rupture dynamics and their effects on structural design might be investigated from a multidisciplinary point of view. Seismotectonic calculations (e.g., slip pattern, rupture velocity) may be extended relating different engineering parameters (e.g., interstorey drifts, spectral accelerations) across different disciplines while using code based seismic design approaches. Current state of the art building codes still far from fully reflecting earthquake source related parameters into design rules. Some of those deficiencies and recent efforts to overcome these problems were also mentioned. Next generation ground motion prediction equations (GMPEs) may be incorporated with certain site categories for site effects. Likewise in the 2011 Van Earthquake, Reverse/Oblique earthquakes indicate that GMPEs need to be feasible to a wider range of magnitudes and distances in engineering practice. Due to the reverse faulting with large slip and dip angles, vertical displacements along with directivity and fault normal effects might significantly affect the engineering structures. Main reason of excessive damage in the town of Erciş can be attributed to these factors. Such effects should be considered in advance through the establishment of vertical design spectra and effects might be incorporated in the available GMPEs.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Vibration characteristics change of a base-isolated building with semi-active dampers before, during, and after the 2011 Great East Japan earthquake

  • Dan, Maki;Ishizawa, Yuji;Tanaka, Sho;Nakahara, Shuchi;Wakayama, Shizuka;Kohiyama, Masayuki
    • Earthquakes and Structures
    • /
    • 제8권4호
    • /
    • pp.889-913
    • /
    • 2015
  • Structural vibration characteristics of a semi-active base-isolated building were investigated using seismic observation records including those of the 2011 Great East Japan earthquake (Tohoku earthquake). Three different types of analyses were conducted. First, we investigated the long-term changes in the natural frequencies and damping factors by using an ARX model and confirmed that the natural frequency of the superstructure decreased slightly after the main shock of the Tohoku earthquake. Second, we investigated short-term changes in the natural frequencies and damping factors during the main shock by using the N4SID method and observed different transition characteristics between the first and second modes. In the second mode, in which the superstructure response is most significant, the natural frequency changed depending on the response amplitude. In addition, at the beginning of the ground motion, the identified first natural frequency was high possibly as a result of sliding friction. Third, we compared the natural frequencies and damping factors between the conditions of a properly functional semi-active control system and a nonfunctional system, by using the records of the aftershocks of the Tohoku earthquake. However, we could not detect major differences because the response was probably influenced by sliding friction, which had a more significant effect on damping characteristics than did the semi-active dampers.

국내 관측 지진파형을 이용한 지진파형 영향인자에 관한 연구 (The Study on the Parameters to Represent the Characteristics of the Observed Ground motions)

  • 김준경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.44-48
    • /
    • 2000
  • Several parameters to represent the characteristics of the observed at the domestic networks from several earthquakes occurred in the Korean Peninsula. Parameters to fit most the multiple Fourier amplitude spectra of the observed accelerations are estimated. This study adopts the stochastic ground motion model referred to the BLWN mode in which the energy is distributed randomly over the duration of the source and which has proven to be very effective in modeling a wide range of ground motion observations. The stochastic ground motion model employed here uses an omega-squared ({{{{ omega ^2 }}) Brune source model with a single corner frequency and a constant stress drop,. The {{{{ omega ^2 }} source model has become a seismological standard because of its simplicity an ability to predict spectral amplitudes and shapes over an extremely broad ranges of magnitudes distances and from the inversion show very unstable based on the fact of high values of mean/median. These results may imply that more observed data and more precise site classification including accurate preparation analysis of data such as more accurate scaling from counts to kine are needed for more stable are effective inversion of Fourier amplitude spectrum of the observed ground motions.

  • PDF

Exploring the effects of tuned mass dampers on the seismic performance of structures with nonlinear base isolation systems

  • Hessabi, Reza Mirza;Mercan, Oya;Ozturk, Baki
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.285-296
    • /
    • 2017
  • Base isolation is a quite practical control strategy for enhancing the response of structural systems induced by strong ground motions. Due to the dynamic effects of base isolation systems, reduction in the interstory drifts of the superstructure is often achieved at the expense of high base displacement level, which may lead to instability of the structure or non-practical designs for the base isolators. To reduce the base displacement, several hybrid structural control strategies have been studied over the past decades. This study investigates a particular strategy that employs Tuned Mass Dampers (TMDs) for improving the performance of base-isolated structures and unlike previous studies, specifically focuses on the effectiveness of this hybrid control strategy in structures that are equipped with nonlinear base isolation systems. To consider the nonlinearities of base isolation systems, a Bouc-Wen model is selected and nonlinear dynamic OpenSees models are used to perform several time-history simulations in time and frequency domains. Through these numerical simulations, the effects of several parameters such as the fundamental period of the structure, dynamic properties of the TMD and isolation systems and properties of the input ground motion on the behaviour of TMD-structure-base isolation systems are examined. The results of this study provide a better insight into the performance of linear shear-story structures with nonlinear base isolators and show that there are many scenarios in which TMDs can still improve the performance of these systems.