• 제목/요약/키워드: High Energy Physics

검색결과 745건 처리시간 0.042초

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.

Measurement of Energy bands of the MgO Layer in AC-PDPs

  • Jeoung, S.J.;Lee, H.J.;Son, C.G.;Kim, J.H.;Park, E.Y.;Hong, Y.J.;You, N.L.;Lee, S.B.;Han, Y.G.;Jeoung, S.H.;Song, K.B.;Moon, M.W.;Oh, P.Y.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.906-909
    • /
    • 2006
  • The secondary electron emission coefficient $({\gamma})$ of the cathode is an important factor for improving the discharge characteristics of AC-PDPs because of its close relationship to discharge voltage. In AC-PDPs, MgO is most widely used as a surface protective layer. In this experimental, we have investigated the electronic structure of the energy band structure of the MgO layer responsible for the high ${\gamma}$. The MgO layers have been deposited by electron beam evaporation method, where the $O_2$ partial pressures have been varied as 0, $5.2{\times}10^{-5}$ torr, $1.0{\times}10^{-4}$ torr, and $4.1{\times}10^{-4}$ torr, in this experiment. It is noted that work function that is energy gap between surface and first defect level of MgO layer has the lowest value for the highest O2 partial pressure of $4.1^{\ast}10^{-4}$ Torr.

  • PDF

Electronic Spin Filter via Spin Superlattice

  • Han, Jae-Ho;Lee, H.W.;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • 제12권2호
    • /
    • pp.77-80
    • /
    • 2007
  • Recently there was a proposal for a spin filter by using the spin superlattice structure. In a certain energy range, the proposed structure exhibits a high spin filtering efficiency close to 100%. Unfortunately such energy range turns out to be narrow. In this paper, we report a method to widen the energy range by using an analogy to optical anti-reflection coating. In optics, it is well known that a stack of alternating layers of two dielectric materials can function as a highly transmissive or reflective filter for wide range of wavelength. Since electrons also have wave character as light, it would be possible to make an electronic analog of an optical filter. We demonstrate that alternating layers of two materials with different g-factors can function as a spin filter that allows electrons to be transmitted only when their spins point towards a certain particular direction. This spin-superlattice-based spin filter operates in wide energy ranges, curing the problem in the previous proposal.

Laboratory Astrophysics using Intense X-ray from Free Electron Lasers

  • Chung, Moses
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.65.4-65.4
    • /
    • 2017
  • The laboratory astrophysics is a new emerging field of basic sciences, and has tremendous discovery potentials. The laboratory astrophysics investigates the basic physical phenomena in the astrophysical objects in controlled and reproducible manners, which has become possible only recently due to the newly-established intense photon and ion beam facilities worldwide. In this presentation, we will introduce several promising ideas for laboratory astrophysics programs that might be readily incorporated in the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). For example, precise spectroscopic measurements using Electron Beam Ion Trap (EBIT) and intense X-ray photons from the PAL-XFEL can be performed to explore the fundamental processes in high energy X-ray phenomena in the visible universe. Besides, in many violent astrophysical events, the energy density of matter becomes so high that the traditional plasma physics description becomes inapplicable. Generation of such high-energy density states can be also be achieved by using the intense photon beams available from the PAL-XFEL.

  • PDF

A Practical Method for Estimating High-Energy X-Ray Spectra Using the Iterative Perturbation Principle of Waggener

  • Iwasaki, Akira;Matsutani, Hideya;Kubota, Mamoru;Fujimori, Akira;Suzaki, Katsumasa;Abe, Yoshinao
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.263-266
    • /
    • 2002
  • We have developed a practical method for estimating high-energy x-ray spectra using measured attenuation curves. This method is based on the iterative perturbation technique proposed by Waggener et al. The principle is to minimize the difference between the measured and calculated transmission curves. The experimental study was made using 4 MV, 10 MV, and 15 MV x-ray beams. It has been found that the spectrum varies strongly with the off-axis distance.

  • PDF

FPGA를 이용한 우주 입자환경 관측용 초소형 입자검출기 시스템 설계 (DESIGN OF COMPACT PARTICLE DETECTOR SYSTEM USING FPGA FOR SPACE PARTICLE ENVIRONMENT MEASUREMENT)

  • 유광선;오대수;김성준;김희준;이재진;신구환;고대호;민경욱;황정아
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권2호
    • /
    • pp.155-166
    • /
    • 2007
  • 우주환경의 주 요소인 고에너지 입자를 검출하기 위한 고분해능 전자 및 양성자 검출기를 설계하였다. 전자와 양성자의 flux는 궤도상의 위치나 태양활동에 따라 급격하게 변할 수 있다. 이러한 상황에서 높은 에너지 분해능으로 입자환경을 검출, 연구하기 위한 검출기의 개념설계를 시도하였으며, 이를 실제 우주환경에서 어느 정도의 성능을 가질 수 있는지를 예측하여 보았다. 또한, 높은 입자 플럭스에도 정상적인 측정이 가능할 수 있도록 FPGA를 이용한 병렬 처리 알고리즘을 고안하고 전산모사 기법을 통하여 성능을 평가하였다.

PULSED NEUTRON FACILITY BASED ON AN ELECTRON LINAC

  • Kim, Guin-Yun;Son, Dong-Chul;Lee, Young-Seok;Ko, In-Soo;Cho, Moo-Hyun;Namkung, Won;Chang, Jong-Hwa
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.327-331
    • /
    • 2001
  • The Pohang Neutron Facility based on an electron linac was constructed in order to construct the infrastructure for nuclear data production in Korea. It consists of a 100-MeV electron linac, a water-cooled Ta target, and an 11-m time-of-flight path. We measured the time-of-flight path length, the neutron energy spectra for different water levels inside the moderator, and the neutron total cross sections of polyethylene and copper by the transmission method.

  • PDF

Modeling of Electrical Transport in YBCO Single Layer Thin Films using Flux Motion Model

  • Ud Din, Fasih;Shaari, Abdul Halim;Kamalianfer, Ahmad;Navasery, Manizheh;Yar, Asfand;Talib, Zainal Abidin;Pah, Lim Kean;Kien, Chen Soo
    • Journal of Magnetics
    • /
    • 제19권2호
    • /
    • pp.140-145
    • /
    • 2014
  • The electrical transport properties of YBCO single layers thin film have been investigated using different physical techniques. For the purpose, the physical properties are probed numerically with help of simulation modelling. The physical transport properties were also estimated with temperature and magnetic fields limits using thermally-activated flux flow model with some modifications. The result of present simulation modelling indicated that the magnitude of activation energy depends on temperature and magnetic field. The simulations revealed thickness dependent physical transport properties including electrical and magnetic properties of deposited YBCO single layers thin films. Furthermore, it shows the temperature dependence of the pinning energy. In the nutshell, the result can be used to improve the Superconducting Properties ($T_c$) of the YBCO single layers thin films.

BEAVRS benchmark analyses by DeCART stand-alone calculations and comparison with DeCART/MATRA multi-physics coupling calculations

  • Park, Ho Jin;Kim, Seong Jin;Kwon, Hyuk;Cho, Jin Young
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1896-1906
    • /
    • 2020
  • The BEAVRS (Benchmark for Evaluation and Validation of Reactor Simulation) benchmark calculations were performed by DeCART stand-alone and DeCART/MATRA multi-physics coupled code system to verify their accuracy. The solutions of DeCART stand-alone calculations for the control rod bank worth, detector signal, isothermal temperature coefficient, and critical boron concentration agreed very well with the measurements. The root-mean-square errors of the boron letdown curves for two-cycles were less than about 20 ppm, while the individual and total control rod bank worth agreed well within 7.3% and 2.4%, respectively. For the BEAVRS benchmark calculations at the beginning of burnup, the difference between DeCART simplified thermal-hydraulic stand-alone and DeCART/MATRA coupled calculations were not significantly large. Therefore, it is concluded that both the DeCART stand-alone code and the DeCART/MATRA multi-physics coupled code system have the capabilities to generate high fidelity transport solutions at core follow calculations.