• Title/Summary/Keyword: High Energy Ion Implantation

Search Result 73, Processing Time 0.032 seconds

Stabilization of Modified Deceleration Mode for Improvement of Low-energy Ion Implantation Process (저 에너지 이온 주입의 개선을 위한 변형된 감속모드 이온 주입의 안정화 특성)

  • 서용진;박창준;김상용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.175-180
    • /
    • 2003
  • As the integrated circuit device shrinks to the deep submicron regime, the ion implantation process with high ion dose has been attracted beyond the conventional ion implantation technology. In particular, for the case of boron ion implantation with low energy and high dose, the stabilization and throughput of semiconductor chip manufacturing are decreasing because of trouble due to the machine conditions and beam turning of ion implanter system. In this paper, we focused to the improved characteristics of processing conditions of ion implantation equipment through the modified deceleration mode. Thus, our modified recipe with low energy and high ion dose can be directly apply in the semiconductor manufacturing process without any degradation of stability and throughput.

Development of Analysis Simulation Tool of High-Energy Ion Implantation Process for GSI MOS Transistor (GSI급 MOS Transistor 개발을 위한 HEI (High-Energy Ion Implantation) 공정 분석 시뮬레이터 개발)

  • 손명식;박수현;이영직;권오근;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.946-949
    • /
    • 1999
  • In this research we have developed a reliable, effective and feasible HEI(High-Energy Ion Implantation) process 3D-simulation tool, and then by using it we can predict and analyze the effect of HEI process on characteristics of the standard CMOS device. high-energy ion implantation above 200 keV is inevitable process to form retrograde well and buried layer to prevent leakage current, to conduct field implant for field isolation, and to perform after-gate implantation. The feasible analysis tool is a product of the HEI process modeling verified by comparison of the SIMS experiments with the simulation results. Especially, in this paper, we present the predicting capability of HEI-induced impurity and damage profiles compared with the published SIMS data in order to acquire the reliability of our results ranging from few keV to several MeV for phosphorus and boron implantation.

  • PDF

SURFACE PROCESSING OF TOOLS AND COMPONENTS BY MEVVA SOURCE ION IMPLANTATION

  • Lin, W.L.;Sang, J.M.;Ding, X.J.;Yuan, X.M.;Xu, J.;Zhang, H.X.;Zhang, X.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.106-114
    • /
    • 1995
  • Direct implantation of metallic ion species has been employed in surface processing of industrial components and tools with very encouraging improvements in recent years. In spite of high technicla effectiveness, this new surface processing technique has not been extensively accepted by industries mainly because of high cost(capital and operating) compared with other competitive surface processing techniques. High current and large implantation area with eliminating the mass analyzer and the beam-scanning unit make metal vapor vacuum are(MEVVA)source ion implantation versatile, simple and cheap to operate and well suited to commercial surface processing. In this paper, the recent development of MEVVA source ion implantation technique ar Beijing Normal University has been reviewed and the results of production trials of several industrial components and tools implanted by MEVVA source ion implantation have been presented and discussed.

  • PDF

A Study on High Energy Ion Implantation for Retrograde Well Formation (Retrograde Well 형성을 위한 고에너지 이온주입에 대한 연구)

  • 윤상현;곽계달
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.358-364
    • /
    • 1998
  • Retrograde well is a new process for ULSI fabrication. High energy ion implantation has been used for retrograde well formation. In this paper the forming condition for retrograde well using high energy ion implantation is compared with that for conventional well. TW signals for retrograde p-,n-well($900^{\circ}C$),after annealing are similar trends to those of conventional ones($1150^{\circ}C$), however the signals for RTA have the highest value because of small thermal budget. Junction depths of retrograde well are varied from about 1.2 to $3.0\{mu}m$ as for conventional well. The peak concentrations of retrograde well, however, are about 10 times higher in values than those of conventional ones so that they can be used as any types of potential barriers or gettering sites. The critical dose for phosphorus implantation in our experiments is between $3\times10^{13} and 1\times10^{14}/cm^2$. Under the above critical dose, there are many secondary defects near projected range such as dislocation lines and dislocation loops.

  • PDF

Development of High Flux Metal Ion Plasma Source for the Ion Implantation and Deposition

  • Kim, Do-Yun;Lee, Eui-Wan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.2
    • /
    • pp.45-56
    • /
    • 2003
  • A high flux metal plasma pulse ion source, which can simultaneously perform ion implantation and deposition, was developed and tested to evaluate its performance using the prototype. Flux of ion source was measured to be 5 A and bi-polar pulse power supply with a peak voltage of 250 V, repetition of 20 Hz and width of 100 ${\mu}\textrm{s}$ has an output current of 2 kA and average power of 2 kW. Trigger power supply is a high voltage pulse generator producing a peak voltage of 12 kV, peak current of 50 A and repetition rate of 20 Hz. The acceleration column for providing target energy up to ion implantation is carefully designed and compatible with UHV (ultra high vacuum) application. Prototype systems including various ion sources are fabricated for the performance test in the vacuum and evaluated to be more competitive than the existing equipments through repeated deposition experiments.

  • PDF

A Study on Secondary Defects in Silicon after 2-step Annealing of the High Energy $^{75}AS^+$ Ion Implanted Silicon (고에너지비소 이온 주입후 2단계 열처리시 2차결함에 대한 연구)

  • 윤상현;곽계달
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.796-803
    • /
    • 1998
  • Intrinsic and proximity gettering are popular processes to get higher cumulative production yield and usually adopt multi-step annealing and high energy ion implantation, respectively. In order to test the combined processed of these, high energy \ulcornerAs\ulcorner ion implantation and 2-step annealing process were adopted. After the ion implantation followed by 2-step annealing, the wafers were cleaved and etched with Wright etchant. The morphology of cross section on samples was inspected by FESEM. The concentration profile of As was measured by SRP. The location and type of secondary defects inspected by HRTEM were dependent on the 1st annealing temperatures. That is, a line of dislocation located at $1.5mutextrm{m}$ apart from the surface at $600^{\circ}C$ lst annealing was changed to some dislocation lines or loops nearby the surface at 100$0^{\circ}C$. The density of dislocation line was reduced but the size of the defects was enlarged as the temperature increased.

  • PDF

Simulation Study of ion-implanted 4H-SiC p-n Diodes (이온주입 공정을 이용한 4H-SiC p-n Diode에 관한 시뮬레이션 연구)

  • Lee, Jae-Sang;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.128-131
    • /
    • 2009
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used Monte-Carlo method. We simulated the effect of channeling by Al implantation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the effect of varying the implantation energies and the corresponding doses on the distribution of Al in 4H-SiC. The controlled implantation energies were 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2{\times}10^{14}$ to $1{\times}10^{15}\;cm^{-2}$. The Al ion distribution was deeper with increasing implantation energy, whereas the doping level increased with increasing dose. The effect of post-implantation annealing on the electrical properties of Al-implanted p-n junction diode were also investigated.

Wear Properties of Biocompatible Ti Implant due to Nitrogen Ion Implantation (질소이온주입에 따른 생체안전성 티타늄 임플란트의 마모특성)

  • 최종운;손선희;변응선;정용수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.126-134
    • /
    • 1999
  • In this study, plasma source ion implantation was used to improve the wear properties of biocompatible titanium implant. In order to observe the effect of ion energy and dose on wear property of titanium implant, pin-on-disk type wear tests in Hank's solution were carried out. The friction coefficient of ion implanted specimens were increased from 0.47 to 0.65 under high energy and ion dose conditions. As increasing ion energy and ion dose, the amount of wear was reduced.

  • PDF

Interaction between Oxygens and Secondary Defects Induced in Silicon by High Energy $B^+$Ion Implantation and Two-Step Annealing

  • Yoon, Sahng-Hyun;Jeon, Joon-Hyung;Kim, Kwang-Tea;Kim, Hyun-Hoo;Park, Chul-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.185-186
    • /
    • 2005
  • Intrinsic gettering is usually used to improve wafer quality which is an important factor for reliable ULSI devices. The two-step annealing method was adopted in order to investigate interactions between oxygens and secondary defects during oxygen precipitation process in lightly and heavily boron doped silicon wafers with high energy $^{11}B^+$ ion implantation. Secondary defects were inspected nearby the projected range by high resolution transmission electron microscopy. Oxygen pileup was measured in the vicinity of the projected range by secondary ion mass spectrometry for heavily boron doped silicon wafers.

  • PDF

Improvement of wear resistance of Zircaloy-4 by nitrogen implantation

  • Han, Jeon G.;Lee, jae S.;Kim, Hyung J.;Kim, W.;Choi, B.Y.;Tang, Guoy
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.06a
    • /
    • pp.151-151
    • /
    • 1995
  • Nitrogen implantation process has been applied for improvement of wear resistance of Z Zircaloy-4 fuel cladding materials. Nitrogen was implanted at 120 ke V to a total do range of 1xHP ions/cm2 to 8xlO17 ions/cm2 at various temperatures of 298"C to 676"C. The m microstructure changes by nitrogen implantation were analyzed by using TEM, XRD 뻐d A AES, cmd then wear behavior was evaluated by ball-on-disc wear testings at various loads a and sliding velocity under unlubricated condition. Nitrogen implantation produced ZrNx nitride above 4.37x1017 ions!cm2 as well as heavy d dislocations, which enhanced microhardness of the implanted surface of up to 900 Hk from 2 200 Hk of unimplanted substrate. Hardness was also found to be increased with increasing i implantation temperature and enhanced up to OOOHk at 620 "C. the wear resistance was g greatly improved with increasing total ion do않 as well as implantation temperature. The effective enhancement of wear resistance at high dose and tem야ratures is believed d due to significant hardening associated with high degree of precipitation of Zr nitrides and g generation of prismatic dislocation I$\infty$ps.infty$ps.

  • PDF