• Title/Summary/Keyword: High Damping Rubber

Search Result 86, Processing Time 0.024 seconds

An Experimental Study of the Long-term Creep characteristic of High Damping Rubber Bearings (고감쇠 고무받침의 장기 크리프 특성에 대한 실험적 연구)

  • Oh, Ju;Park, Jin-Young;Park, Kun-Nok;Kim, See-Dong;Park, Sung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Isolated structures use devices such as high damping rubber bearings (HDRB) in order to dramatically reduce the seismic forces transmitted from the substructure to the superstructure. The laminated rubber bearing is the most important structural member of a seismic isolation system. The basic characteristics of rubber bearings have been confirmed through compression tests, compressive shearing tests and creep tests. This paper presents the results and analysis of a 1000hr, ongoing creep test conducted at 7.5MPa, 8.37MPa in our laboratory. The long-term behavior of bridge bearings, such as high-damping rubber bearings, will be discovered through a compression creep test subjected to actual environmental conditions. These tests indicated that the maximum creep deformation is about $0.3{\sim}1.92%$ of total rubber thickness.

Characteristic Tests of Reduced-Scale High Damping and Lead Rubber Bearings (축소규모 고감쇠 및 납삽입형 면진베어링에 대한 특성시험고찰)

  • Yoo, Bong;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.175-182
    • /
    • 1997
  • The characteristic tests of reduced-scale high damping and lead rubber bearings are performed by changing the shear displacements and the vertical loads. The test frequency is 0.5Hz. Test results show that the shear stiffnesses obtained for both bearings are less than target values, but the damping values are greater than the targets. The shear stiffness and damping of lead are larger than those of high damping bearings. The shear-deformation characteristic values such as stiffness, damping and yield load values are changed according to the level of design vertical loads.

  • PDF

An Experimental Study for the Shear Property Dependency of High Damping Rubber Bearings (고감쇠 고무받침의 전단특성 의존성에 대한 실험적 연구)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.121-129
    • /
    • 2010
  • In this paper, the characteristics of high damping rubber bearing were studied through various prototype test. The characteristics of HDRB were dependent on displacements, repeated cycles, frequencies, vertical pressure, temperature, the capability of shear deformation and the vertical stiffness. The prototype test showed that the displacement was the most governing factor influencing on characteristics of HDRB. The effective stiffness and equivalent damping of HDRB were decreased with displacement, and increased with frequency. The effective stiffness was decreased with high vertical pressure, while the equivalent damping was increased. In which, the equivalent damping was more dependent on the vertical pressure than the effective stiffness. According to the results of this study, more careful examination is required to design the effective stiffness and equivalent damping ratio considering the dependencies of design displacement and exciting velocity.

A Shaking Table Test of Small Isolation System Considering the Floor Response (층응답을 고려한 소형면진장치의 진동대실험)

  • Kim, Min-Kyu;Choun, Young-Sun;Lee, Kyung-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.497-504
    • /
    • 2005
  • This paper presents the results of experimental studies on the equipment isolation effect considering the floor response. For this purpose, shaking table tests were performed. For the measuring the floor response, numerical analysis was performed. For the isolation for the equipment, Natural Rubber Bearing(NRB), High Damping Rubber Bearing(HDRB) and Friction Pendulum System(FPS) were used. Finally, it is presented that the isolation systems used in this test can be adopted for the small equipment isolation. But the rubber bearing used in this study affected to the temperature change very sensitively.

  • PDF

Seismic Response of Seismically-Isolated Nuclear Power Plants considering Age-related Degradation of High Damping Rubber Bearing (고감쇠고무 적층받침의 경년열화를 고려한 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The high damping rubber bearings contributed to reduce a seismic force transmitted to upper structures, the material properties of rubber changes with time and the rubber with age-related degradation can affect the seismic response of structures and equipments. Therefore the seismic response of structure considering age-related degradation of isolators should be evaluated. In this paper, the stiffness and damping for isolators were defined using the aging data proposed by other researchers. The reactor containment building and the auxiliary building were selected to conduct the nonlinear analysis and the natural frequency, maximum responses, floor response spectrum(FRS) were evaluated with time using the four earthquakes with different frequency contents. According to the analysis results, the seismic responses are increased by the age-related degradation of isolators and the detail inspections should be conducted up to 20 years because it was presented that the change of FRS was high during this period.

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

An Experimental Study on the Damping Capacity of Lead Rubber Bearing with High Lead-plug Area Ratio (납-플러그 면적비가 큰 LRB의 감쇠능력에 관한 실험적 연구)

  • Choi, Jung-Ho;Kim, Woon-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.217-224
    • /
    • 2009
  • Many engineering researches are performed to ensuring structural safety from earthquake. In this study, the damping capacity of LRB(lead rubber bearing) with high lead-plug area ratio was examined by hysteresis loop from experiments. The displacement controlled tests were performed for 12 specimens designed in 2 types by lead-plug area ratio as main parameter. Each coupled specimens were tested by 3 times sinusoidal loads with different loading velocities. From the experimental results, LRB with high lead-plug area ratio has sufficient damping ratio for reducing horizontal seismic load to structures.

Study on the Design of Butyl Rubber Compound and Noise Reduction System for Sound Insulation (소음 차단 성능 향상을 위한 부틸 탄성체 배합 및 진동제어 시스템 디자인 연구)

  • Kim, Won-Taek;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • The noise between floors of apartment has been hot issue nowadays. In order to improve the noise insulation performance, we proposed the antivibration rubber system which can be applied to the floor system for sound insulation. Among various types of elastomer, butyl rubber showed the good aging characteristic, low rebound resilience and high damping factor. Thus, the butyl rubber was selected as a basic rubber for antivibration rubber system. The effects of type and loading amounts of carbon black on antivibration properties of butyl rubber were studied. The increase of surface area and the content of carbon black resulted in high bound rubber fraction, high mechanical property, low rebound resilience, and high damping factor of butyl rubber. Based on the results of this study, the new antivibration rubber was prepared and applied to the floor system for sound insulation. The impact sounds of floor system proposed in this study were 40 dB and 43 dB in cases of light weight and heavy weight impact sound, respectively.

Experimental Study on Dependent Characteristics of Lead Rubber Bearing for Buildings (건물용 납면진받침의 의존성 평가 실험)

  • 정길영;박건록;하동호;김두훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.373-382
    • /
    • 2002
  • In this paper, the characteristic dependencies of LRB(lead rubber bearing) were studied by various prototype tests on LRB for buildings. The characteristics of LRB were dependent on displacements, repeated cycles, frequencies, vertical pressures and temperatures. The prototype test showed that the displacement was the most governing factor influencing on characteristics of LRB. The effective stiffness and equivalent damping of LRB were decreased with large displacement, and increased with high frequency. After the repeated cyclic test with 50 cycles, the effective stiffness and equivalent damping of LRB were reduced by approximately 20% compared with those of the 1$^{st}$ cycle. The effective stiffness was decreased with high vertical pressure, while the equivalent damping was increased. In which, the equivalent damping was more dependent on the vertical pressure than the effective stiffness.s.

  • PDF

Effects of High Damping Rubber Bearing on Horizontal and Vertical Seismic Responses of a Pressurized Water Reactor

  • Bong Yoo;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1021-1026
    • /
    • 1995
  • The seismic responses of a base isolated Pressurized Water Reactor (PWR) are investigated using a mathematical model which expresses the superstructure as lumped mass-spring model and the seismic isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 E1 Centre earthquakes in both horizontal and vertical directions. In the analysis, structural damping of 5% is used for the superstructure. The isolator damping ratios of 12% for horizontal and 5% for vertical directions are used. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure in horizontal direction. However, the vertical acceleration responses at the superstructure in the base isolation system are amplified to some extent. It is suggested that the vertical seismic responses at the superstructure should be reduced by introducing a soft vertical isolation device.

  • PDF