• 제목/요약/키워드: High Cycle Fatigue Properties

검색결과 84건 처리시간 0.021초

고강도 소재의 인장과 저주기피로 물성치의 연관성에 관한 연구 (A Study on the Relationship between Tensile and Low Cycle Fatigue Properties of High Strength Material)

  • 박명규;서창희
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.110-115
    • /
    • 2014
  • Low cycle fatigue characteristics are very important in the development of automobile suspension parts. Fatigue properties using the strain life approach are usually obtained from low cycle fatigue tests. However, low cycle fatigue testing requires a lot of time and cost. In the current study, an attempt to estimate low cycle fatigue properties of high strength steel sheet from tensile test and tensile simulations is performed. In addition, low cycle fatigue testing was conducted to compare the fatigue properties obtained from tensile testing and simulations. In conclusion, the results effectively predict the low cycle fatigue properties. However, some deviations still exist.

선택적 레이저 용융법으로 제조된 Ti-6Al-4V 합금의 고 주기 피로 특성에 미치는 건식 전해 연마의 영향 (Effect of Dry-Electropolishing on the High Cycle Fatigue Properties of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting)

  • 양동훈;김영균;황유진;김명세;이기안
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.471-476
    • /
    • 2019
  • Additively manufactured metallic components contain high surface roughness values, which lead to unsatisfactory high cycle fatigue resistance. In this study, high cycle fatigue properties of selective laser melted Ti-6Al-4V alloy are investigated and the effect of dry-electropolishing, which does not cause weight loss, on the fatigue resistance is also examined. To reduce the internal defect in the as-built Ti-6Al-4V, first, hot isostatic pressing (HIP) is conducted. Then, to improve the mechanical properties, solution treatment and aging are also implemented. Selective laser melting (SLM)-built Ti64 shows a primary α and secondary α+β lamellar structure. The sizes of secondary α and β are approximately 2 ㎛ and 100 nm, respectively. On the other hand, surface roughness Ra values of before and after dry-electropolishing are 6.21 ㎛ and 3.15 ㎛, respectively. This means that dry-electropolishing is effective in decreasing the surface roughness of selective laser melted Ti-6Al-4V alloy. The comparison of high cycle fatigue properties between before and after dry-electropolished samples shows that reduced surface roughness improves the fatigue limit from 150 MPa to 170 MPa. Correlations between surface roughness and high cycle fatigue properties are also discussed based on these findings.

AZ61 마그네슘 압출재의 압출 온도에 따른 기계적 특성 및 고주기 피로 특성 (Effect of Extrusion Temperature on Mechanical Properties and High-cycle Fatigue Properties of Extruded AZ61 Alloy)

  • 김예진;차재원;김영민;박성혁
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, a commercial AZ61 magnesium alloy is extruded at 300 ℃ and 400 ℃ and the microstructures, mechanical properties, and high-cycle fatigue properties of the extruded materials are investigated. Both extruded materials have a fully recrystallized microstructure with no Mg17Al12 precipitates. The average grain size and maximum basal texture intensity of the extruded material increase with increasing extrusion temperature. The material extruded at 400 ℃ (AZ61-400) has higher tensile yield strength and lower compressive yield strength than the material extruded at 300 ℃ (AZ61-300) because of the stronger basal texture of the former. Because of coarser grain size, the tensile elongation of AZ61-400 is lower than that of AZ61-300. Despite the differences in microstructures and tensile/compressive properties, the two extruded materials have the same fatigue strength of 110 MPa. This is because the finer grain size of AZ61-300 causes an increase in fatigue strength, but its weaker texture causes a decrease in fatigue strength. In both extruded materials, fatigue cracks initiate at the surface of fatigue specimens at all stress amplitudes tested.

이온질화 및 질탄화 처리된 SCr430B 박판강의 인장 및 피로특성 (Tensile and High Cycle Fatigue Properties of Ion-nitrided and Nitro-carburized SCr430B Steels)

  • 박성혁;이종수
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.354-359
    • /
    • 2012
  • Effects of a nitriding treatment on the tensile and high cycle fatigue properties were investigated by conducting ion-nitriding and gas nitro-caburizing treatments on the spheroidized SCr430B medium-carbon steel and performing tensile and tension-tension high cycle fatigue tests. The nitrided samples showed much lower strength and ductility compared to those in the initial as-spheroidized state and premature fracture occurred at the hardened layers. The micro-voids in the compound layer caused fatigue crack initiation. Thus, the removal of the compound layer with micro-voids remarkably improved the fatigue resistance to even beyond that of the as-spheroidized sample.

TMCP 고장력강 용접부의 피로 특성에 관한 연구 (Fatigue properties of welded joints for TMCP steels)

  • 임채범;권영각;엄기원
    • Journal of Welding and Joining
    • /
    • 제8권2호
    • /
    • pp.40-52
    • /
    • 1990
  • Fatigue behavior of the AH, DH and EH grade TMCP(Thermo-Mechanical Control Process) steels was studied. High cycle and low cycle fatigue tests were carried out for the weldment and base metal of each steel. The results showed that the fatigue limit at 2 * $10^6$ cycles was 33 to 37 kg/$mm^2$ for the base metal and 30 to 34 kg/$mm^2$ for the weldment. The ratio of fatigue limit to tensile strength for TMCP steels was 0.65 to 0.71, which was a value close to the upper limit for the ordinary steels. It was also found that the high cycle fatigue behavior of TMCP steels could be affected by the microstructures of base metal. It will be necessary to have fine structure for TMCP steels to increase the fatigue resistance. In low cycle fatigue test, the fatigue lifetime of AH and DH steels accorded well with the ASME best fit curve, while that of EH steel was considerably lower than the fatigue lifetime of the other steels. Fatigue resistance of the weldment made by high heat input(180kJ/cm) welding was not lower than that made by low heat input(80kJ/cm) welding in case of high cycle fatigue, but the high heat input welding decreased the fatigue resistance in case of low cycle fatigue.

  • PDF

STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향 (The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel)

  • 이현승;신형주;김송희
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성 (Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy)

  • 차재원;진상철;박성혁
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.

자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향 (Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel)

  • 송전영;박중철;안용식
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

SCMH2 고속회전축재의 표면처리조건에 따른 VHCF 피로특성에 관한 연구 (VHCF Characteristics of SCMH2 Steel Depending on the Surface Treatment Conditions)

  • 서창민;서창희;서민수
    • Journal of Welding and Joining
    • /
    • 제31권4호
    • /
    • pp.47-53
    • /
    • 2013
  • SCMH2 steel is widely used in the industrial members of car and tractor. This study focused on material properties and evaluation technology of the SCMH2 steel regarding the surface treatment followed by carburizing and nitriding, by means of impact test, hardness test. and fatigue test including HCF (high cycle fatigue) and VHCF (very high cycle fatigue). Drop weight impact tester (Instron, 9250 Hv) and Cantilever type rotating-bending fatigue tester (YRB200, 3150 rpm) were used to characterize the SCMH2 standard specimen before and after carburizing/nitriding. In order to understand those effects on fatigue characteristics and material properties, the fractured surfaces were carefully observed and analyzed by SEM (scanning electron microscope) and EDS (energy-dispersive X-ray spectroscopy).

고강도 저합금강의 저주기 피로특성 (Low Cycle Fatigue Characteristics of High Strength Low Alloy Steel)

  • 김재훈;김덕회;이종현;조성석;전병환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.169-174
    • /
    • 2001
  • Low cycle fatigue tests are performed on high strength low alloy steels that be developed for submarine material. The relation between absorbed plastic strain energy and numbers of cycle to failure is examined in order to predict the low cycle fatigue life of structural steels by using plastic strain energy method. The cyclic properties are determined by a least square fit techniques. The life predicted by the plastic strain energy method is found to coincide with experiment data and results obtained from the Coffin-Manson method. Also the cyclic behavior of structural steels is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of structural steels are investigated according to changing tempering temperatures. In the case of PFS steels, the $\varepsilon$-Cu is formed in 550C of tempering temperature and enhances the low cycle fatigue properties.

  • PDF